

Total No. of Pages: 02

Total No. of Questions: 09

BMCI (2013 Batch) (Sem.-1)
MATHEMATICS - I (Bridge Course)

Subject Code: BMCI-101 M.Code: 48501

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Q1 Answer briefly:

- a) If $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ find $A B & A \cap B$.
- b) Explain different methods of describing a set.
- c) Draw Venn diagram of $(A \cap B) \cap C$ and $A \cap (B \cap C)$
- d) State duality principle for sets.
- e) Prove that $\tan^{-1} \left(\frac{\sqrt{1 x^2} 1}{x} \right) = \frac{\tan^{-1} x}{2}, x \neq 0.$
- f) If $\begin{bmatrix} a+b & 2 \\ 5 & ab \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}$, find the values of a & b.
- g) If $A = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$ and $B = \begin{bmatrix} -2 & -1 & -4 \end{bmatrix}$ verify that $(AB)^T = B^T A^T$.
- h) If A = $\begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix}$ and $f(x) = x^2 4x + 7$ then show that f(A) = 0.
- i) State Binomial theorem and its two applications.
- j) Show that $\begin{vmatrix} \sin 10^{\circ} & -\cos 10^{\circ} \\ \sin 80^{\circ} & \cos 80^{\circ} \end{vmatrix} = 1$

1 M-48501 (S2)-653

SECTION-B

- Q2. Consider the function : $\left[0, \frac{\pi}{2}\right] \to \mathbb{R}$, given by $f(x) = \sin x$ and $g: \left[0, \frac{\pi}{2}\right] \to \mathbb{R}$ given by $g(x) = \cos x$. Show that f and g are one-one but f + g is not one one.
- Q3. If A, B, C are any three sets then prove that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C) & A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$
- Q4. a) What do you mean by partition of a set. For set $S = \{1, 2, 3, 4, 5, 6\}$ determine whether or not each of the following is a partition of $S : P_1 \{\{1, 3, 5\}, \{2, 4, 6\}\}, P_2 = \{\{2, 4\}, \{1, 3, 5\}, \{6\}\}.$
 - b) Discuss various types of functions with examples.
- Q5. Find the term independent of x in the expansion of $(1 + x + x^3) \left(\frac{3}{2} x^2 \frac{1}{3x} \right)^9$.
- Q6. a) Give example of matrices such that AB = AC, but $B \neq C$.
 - b) Find the value of 'x' for which the matrix $A = \begin{bmatrix} 1 & -2 & 3 \\ 1 & 2 & 1 \\ x & 2 & -3 \end{bmatrix}$ is singular.

SECTION-C

- Q7. If $X = Y = Z = \mathbb{R}$ and $f: X \to Y$ and $g: Y \to Z$ are such that f(x) = 2x + 1, $g(y) = \frac{y}{3}$. Verify that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
- Q8. Using principle of mathematical induction prove that :

$$1.2 + 2.3 + 3.4 + \dots + n(n+1) = \frac{1}{3}n(n+1)(n+2).$$

Q9. Using properties of determinant prove that:

$$\begin{vmatrix} a & b & c \\ a-b & b-c & c-a \\ b+c & c+a & a+b \end{vmatrix} = a^{3}+b^{3}+c^{3}-3abc$$

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 M-48501 (S2)-653