Roll No. \square
Total No. of Questions : 09

BMCI (2013 Batch) (Sem.-1)
 MATHEMATICS - I (Bridge Course)

Subject Code : BMCI-101
M.Code : 48501

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Q1 Answer briefly :
a) If $\mathrm{A}=\{1,2,3\}, \mathrm{B}=\{3,4,5\}, \mathrm{U}=\{1,2,3,4,5,6,7,8,9\}$ find $\mathrm{A}-\mathrm{B} \& \mathrm{~A} \cap \mathrm{~B}$.
b) Explain different methods of describing a set.
c) Draw Venn diagram of $(A \cap B) \cap C$ and $A \cap(B \cap C)$
d) State duality principle for sets.
e) Prove that $\tan ^{-1}\left(\frac{\sqrt{1-x^{2}}-1}{x}\right)=\frac{\tan ^{-1} x}{2}, x \neq 0$.
f) If $\left[\begin{array}{cc}a+b & 2 \\ 5 & a b\end{array}\right]=\left[\begin{array}{ll}6 & 2 \\ 5 & 8\end{array}\right]$, find the values of $a \& b$.
g) If $A=\left[\begin{array}{r}-1 \\ 2 \\ 3\end{array}\right]$ and $B=\left[\begin{array}{lll}-2 & -1 & -4\end{array}\right]$ verify that $(A B)^{T}=B^{T} A^{T}$.
h) If $\mathrm{A}=\left[\begin{array}{rr}2 & 3 \\ -1 & 2\end{array}\right]$ and $f(x)=x^{2}-4 x+7$ then show that $f(\mathrm{~A})=0$.
i) State Binomial theorem and its two applications.
j) Show that $\left|\begin{array}{rr}\sin 10^{\circ} & -\cos 10^{\circ} \\ \sin 80^{\circ} & \cos 80^{\circ}\end{array}\right|=1$

SECTION-B

Q2. Consider the function : $\left[0, \frac{\pi}{2}\right] \rightarrow \mathbb{R}$, given by $f(x)=\sin x$ and $g:\left[0, \frac{\pi}{2}\right] \rightarrow \mathbb{R}$ given by $g(x)=\cos x$. Show that f and g are one-one but $f+g$ is not one - one.

Q3. If A, B, C are any three sets then prove that $A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \&$ $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.

Q4. a) What do you mean by partition of a set. For set $S=\{1,2,3,4,5,6\}$ determine whether or not each of the following is a partition of $\mathrm{S}: \mathrm{P}_{1}\{\{1,3,5\},\{2,4,6\}\}$, $P_{2}=\{\{2,4\},\{1,3,5\},\{6\}\}$.
b) Discuss various types of functions with examples.

Q5. Find the term independent of x in the expansion of $\left(1+x+x^{3}\right)\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}$.
Q6. a) Give example of matrices such that $A B=A C$, but $B \neq C$.
b) Find the value of ' x ' for which the matrix $\mathrm{A}=\left[\begin{array}{rrr}1 & -2 & 3 \\ 1 & 2 & 1 \\ x & 2 & -3\end{array}\right]$ is singular.

SECTION-C

Q7. If $\mathrm{X}=\mathrm{Y}=\mathrm{Z}=\mathbb{R}$ and $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ are such that $f(x)=2 x+1, g(y)=\frac{y}{3}$. Verify that $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.

Q8. Using principle of mathematical induction prove that :

$$
1.2+2.3+3.4+\ldots \ldots \ldots+n(n+1)=\frac{1}{3} n(n+1)(n+2) .
$$

Q9. Using properties of determinant prove that :

$$
\left|\begin{array}{ccc}
a & b & c \\
a-b & b-c & c-a \\
b+c & c+a & a+b
\end{array}\right|=a^{3}+b^{3}+c^{3}-3 a b c
$$

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

