Roll No. \square Total No. of Pages : 03
Total No. of Questions : 10
B.Pharmacy (Sem.-1)

REMEDIAL MATHEMATICS

Subject Code : PHM-112

Paper ID: [D0102]
Time : 3 Hrs.
Max. Marks : 80

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of FIFTEEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains FOUR questions carrying TEN marks each and students have to attempt any THREE questions.

SECTION-A

1. Solve the following :
a) Solve the equation: $5 x^{2}+15=0$
b) If $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 4\end{array}\right]$ and $A^{2}-k A-5 I_{2}=O$, them the value of k is?
c) Solve for x : $\left|\begin{array}{cc}x & 3 \\ 5 & 2 x\end{array}\right|=\left|\begin{array}{cc}5 & -4 \\ 5 & 3\end{array}\right|$
d) Find the Median of the given data 4,6,7,11,18.
e) Find the mean of first ten odd natural numbers.
f) Calculate the value of mode for the following series :
$10,12,17,12,10,12,16,11$
g) Prove that : $\frac{\cot ^{2} \theta}{(1-\operatorname{cosec} \theta)^{2}}=\frac{1+\sin \theta}{1-\sin \theta}$
h) If $4 \sin \theta=3$, find the value of $\frac{\sec \theta+3 \tan \theta}{2 \sec \theta-7 \tan \theta}$
i) Find the relation that must exist between x and y so that (x, y) is equidistant from $(6,-1)$ and $(2,3)$
j) Find the equation of the locus of a point which moves so that its distance from $(3,2)$ is twice its distance from $(1,1)$.
k) Find the equation of the line which passes through $(2,5)$ and cuts off equal intercepts on the axes.
1) Differentiate with respect to $\mathrm{x}: x^{3}+2 x^{2}+7$
m)If $y=e^{3 \log x}$ find $\frac{d y}{d x}$
n) Integrate the function with respect to x the function $x^{2}+7 x+5$
o) Evaluate $\int \frac{1-\tan x}{1+\tan x} d x$

SECTION-B

2. Solve the linear equations, if consistent, $x+3 y=2,2 x+6 y=7$ with the help of determinants.
3. The following table gives the distribution of marks secured by some students in a certain examination :

Marks	$0-20$	$21-30$	$31-40$	$41-50$	$51-60$	$61-70$	$71-80$
No. of Students	42	38	120	84	48	36	31

Find the median marks.
4. Prove that $\frac{\sec 8 A-1}{\sec 4 A-1}=\frac{\tan 8 A}{\tan 2 A}$.
5. Find the equation of the line passing through $(-4,-5)$ and perpendicular to the line joining $(1,2)$ and $(5,6)$.
6. If $e^{x}+e^{y}=e^{x+y}$, show that $\frac{d y}{d x}+e^{y-x}=0$.

SECTION-C

7. Find A^{-1} if $A=\left[\begin{array}{ccc}1 & 2 & -3 \\ 2 & 3 & 2 \\ 3 & -3 & -4\end{array}\right]$
8. Find the mean for the following frequency distribution by Step- Deviation Method

Class- Interval	$84-90$	$90-96$	$96-102$	$102-108$	$108-114$
Frequency	8	12	15	10	5

9. Find the equations of the lines which pass through $(4,5)$ and make equal angles with the lines $5 x-12 y+6=0$ and $3 x=4 y+7$
10. Evaluate :
a) $\int x \cos ^{2} x d x$
b) Differentiate with respect to x the function

$$
y=\frac{1+2 \sec x}{2+5 \sec x}
$$

