Roll No.

Total No. of Pages: 02

Total No. of Questions: 07

B.Sc. (CS) (2013 & Onwards) (Sem.-2)
PARTIAL DIFFERENTIATION & DIFFERENTIAL EQUATIONS

Subject Code: BCS-201 M.Code: 71506

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.

2. SECTION-B contains SIX questions carrying TEN marks each and students have to attempt any FOUR questions.

SECTION-A

1. Answer the following:

a) Define interior point and boundary point.

b) If
$$f(x,y) = \frac{x^2 + 2y^2}{x^2 + y^2}$$
 then show that $L_{(x,y)\to(0,0)} f(x,y)$ does not exist.

c) Discuss the continuity of
$$f(x, y)$$
 at (2, 1) where $f(x, y) =\begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & for(x, y) \neq (0, 0) \\ 0 & for(x, y) = (0, 0) \end{cases}$

- d) Evaluate $\underset{(x,y)\to(1,0)}{Lt}e^{xy}$
- e) Define linear differential equation.
- f) Define singular solution of a given differential equation.
- g) Define homogeneous differential equation.
- h) Define orthogonal trajectories.
- i) Define separable equation.
- j) Define the continuity of a function f(x, y) at a point (a, b).

SECTION-B

- 2. State and prove Eulers homogenous theorem.
- 3. Consider the function $f(x,y) = \begin{cases} 2 \frac{x^2 y^2}{x^2 + y^2} & for(x,y) \neq (0,0) \\ A & for(x,y) = (0,0) \end{cases}$. Find the value of A which will make f continuous at origin.
- 4. If $f(x, y) = x^2 y e^y$, then evaluate f_{xy} , f_{xx} , f_{yy} and f_{xxx} .
- 5. Find one parameter family solution of $y = px + p^2$, where $p = \frac{dy}{dx}$.
- 6. Find the power series solution of $(x^2-1)\frac{d^2y}{dx^2} + 3x\frac{dy}{dx} + xy = 0$, about x = 0.
- 7. Find the solution of Legendre's equation of order n.

NOTE: Disclosure of Identity by writing Mobile No. or Marking of passing request on any paper of Answer Sheet will lead to UMC against the Student.

2 | M-71506 (S3)-1932