Roll No.
Total No. of Pages : 02
Total No. of Questions : 07
B.Sc.(Computer Science) (2013 \& Onwards) (Sem.-4)

NUMBER THEORY
Subject Code : BCS-401
M.Code : 72317

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains SIX questions carrying TEN marks each and students have to attempt any FOUR questions.

SECTION-A

1. Answer the followings in short :
(a) Find G.C.D. of $(49,210,350)$.
(b) Show that n is odd iff $n \equiv 1(\bmod 2)$.
(c) Give an example to show that if $a b \equiv 0(\bmod m)$, then $a \neq 0(\bmod m)$ and $b \equiv 0(\bmod m)$
(d) Solve the linear congruence : $9 x \equiv 21(\bmod 30)$.
(e) State Euclidean algorithm.
(f) State Euler's theorem.
(g) State Wilson's theorem.
h) Define Euler phi function.
(i) Calculate the value of φ (360).
(j) For $\mathrm{n}>2, \varphi(n)$ is an even integer.

SECTION-B

2. Prove that the numbers of primes are infinite.
3. Find values of x and y to satisfy $71 x-50 y=1$.
4. State and prove Fundamental theorem of Arithmetic.
5. State and prove Chinese remainder theorem.
6. State and prove Mobius inversion formula.
7. State and prove Fermat's theorem.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

