Roll No.

Total No. of Pages: 04

Total No. of Questions: 14

B. Sc. (IT) (Sem.-4)

COMPUTER ORIENTED NUMERICAL METHODS

Subject Code: BSIT-404 M.Code: A0211

Time: 3 Hrs. Max. Marks: 75

INSTRUCTIONS TO CANDIDATES:

- Section-A is compulsory consisting of twenty questions of ONE mark each.
- Section-B consists of EIGHT questions of FIVE marks each. Candidate has to attempt any FIVE questions.
- Section-C consists of FIVE questions of TEN marks each. Candidate has to attempt any THREE questions.

SECTION-A

- a) If $A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ satisfies the equation $A^2 = kA$ then the value of k = 1
 - (a) 2
- (b) -2 (c) 1
- (d) -1
- b) For any square matrix A, A.(adj A) = \dots
- c) If A and B are invertible matrices of same order then $(AB)^{-1} = B^{-1}A^{-1}$. (*True*/False)
- d) Matrix multiplication is not commutative in general. (True/False)
- e) If the order of a matrix A is 2×5 and that of matrix B is 5×3 , then order of AB is
- f) If $x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$, then x + y =
 - (a) 7
- (b) 5
 - (c) 6
- (d) 2
- g) If A and B are square matrices of same order then $(AB)^{\prime}$ =
 - (a) $(BA)^{/}$
- (b) $B^{\prime}A^{\prime}$
- (c) $A^{\prime}B^{\prime}$
- (d) None of these

- h) If A, G, H are respectively the Arithmetic mean, Geometric mean and Harmonic mean, then $G^2 = \dots$
- The Harmonic mean between the two numbers a and b is

 - (a) $\frac{2ab}{a+b}$ (b) $\frac{ab}{a+b}$ (c) $\frac{a+b}{2ab}$
- (d) None of these
- j) Median is not affected by extreme values. (True/False)
- k) If f(x) = x + 1, then $\frac{d}{dx}(f \circ f)(x) = \dots$
- 1) If xy = 1, then $\frac{dy}{dx} + y^2 = 0$. (True/False)
- m) If x + y = 8, then the maximum value of xy is
 - (a) 8
- (b) 16
- (c) 20
- (d) 24
- n) The minimum value of $x + \frac{1}{x}, x > 0$ is
 - (a) 0
- (b) 6
- (c) 2
- (d) 8
- o) $\int \frac{1}{1+x^2} dx = \tan^{-1} x + C \text{ (True/False)}$
- p) $\int 2^x dx =$
- q) $\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt$ (True/False)
- r) $\int e^x (f(x) + f'(x)) dx = \dots$
- s) $\int_{-\pi/2}^{\pi/2} \sin^7 x dx =$
 - (a) 2
- (b) 0 (c) 1
- (d) 6

- t) $\int_{1}^{e} \log x \, dx =$
 - (a) 1
- (b) e + 1 (c) e 1
- (d) 0

SECTION-B

2. Find the inverse of the matrix
$$\begin{pmatrix} -1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4 \end{pmatrix}.$$

- 3. Average scores of three Batsmen A, B and C are respectively 40, 45 and 55 and their standard deviations are 9, 11 and 15. Which batsman is more consistent and why?
- 4. If $y = \sqrt{\frac{1-x}{1+x}}$, prove that $(1-x^2)\frac{dy}{dx} + y = 0$.
- 5. Evaluate $\int_{0}^{2} \frac{1}{1+x^4} dx$, taking n = 4 by Simpson's $1/3^{rd}$ rule. Give the answer to three places of decimal.
- 6. Evaluate $\int \sin \sqrt{x} dx$.
- 7. Solve the following system of linear equations by Gauss Elimination method:

$$x + y + z = 6$$
, $x - y + 2z = 5$, $3x + y + z = 8$

8. Evaluate:
$$\int \frac{2x+1}{(x+1)(x-2)} dx$$
.

9. Find the rank of the matrix $\begin{pmatrix} 2 & 2 & 2 \\ 1 & 2 & 1 \\ 3 & 4 & 3 \end{pmatrix}$

SECTION-C

10. Solve the following system of linear equations by matrix inversion method :

$$x-y+2z=7$$
, $3x+4y-5z=-5$, $2x-y+3z=12$

- 11. A wire of length 28 m is to be cut into pieces. One of the pieces is to be made into a square and the other into a circle. What should be the length of the two pieces so that the combined area of the circle and square is minimum?
- 12. Evaluate $\int_{0}^{\pi/4} \log(1+\tan x) dx$.
- 13. a) Find the coefficient of skewness from the following data:

Marks above :	0	10	20	30	40	50	60	70	80
No. of Students :	150	140	100	80	80	70	30	14	0

- b) Find the derivative of $e^{ax} \cos(bx + c)$.
- 14. a) If $A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$, then prove that $A^2 4A 5I = O$.
 - b) Given that

<i>x</i> :	4.0	4.2	4.4	4.6	4.8	5.0	5.2
Log x:	1.3863	1.4351	1.4816	1.5261	1.5686	1.6094	1.6487

Evaluate $\int_{4}^{5.2} \log x \, dx$ by Simpson's 3/8 rule.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.