Roll No.
Total No. of Pages : 02
Total No. of Questions : 07
B.Sc. (Computer Science) (2013 \& Onwards) (Sem.-3)

SEQUENCE SERIES AND CALCULUS
Subject Code : BCS-302
M.Code : 71774
Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains SIX questions carrying TEN marks each and students have to attempt ANY FOUR questions.

SECTION-A

1. Write briefly :
a) State Cauchy's Integral test.
b) Show that $\sum_{n=1}^{\infty} \frac{\sin n x}{n^{2}}$ is convergent series.
c) Define Alternating series with example.
d) State Bertrand's test.
e) Show that $\left\{1+(-1)^{\mathrm{n}}\right\}$ oscillates finitely.
f) Define Beta function with example.
g) Show that $\int_{-1}^{1}|x| d x=1$
h) State second mean value theorem.
i) Test for convergence $\int_{0}^{1} \frac{\sin x}{x^{\frac{3}{2}}} d x$
j) State Cauchy test for convergence of improper integral.

SECTION-B

2. a) State and Prove Sandwich theorem.
b) If $\lim a_{n}=a$ and $a_{n} \geq 0, \forall n$. Then $a \geq 0$.
3. a) Test for convergence of the series whose nth term is $\frac{n(n-1) \ldots 1}{n^{n}}$.
b) State and Prove Logarithmic Test.
4. a) State and Prove Leibnitz's test.
b) Prove that every absolutely convergent series is convergent.
5. State and Prove Darboux's theorem.
6. a) If a function f is monotonic on $[a, b]$, then it is integrable on $[a, b]$.
b) Show that a bounded function f is integrable on $[\mathrm{a}, \mathrm{b}]$, if the set of its points of discontinuity has only a finite number of limit points.
7. Show that $\int_{0}^{\frac{\pi}{2}} \log \sin x d x$ is convergent and hence evaluate it.

NOTE : Disclosure of identity by writing mobile number or making passing request on any page of Answer sheet will lead to UMC case against the Student.

