

Total No. of Pages: 02

Total No. of Questions: 07

B.Sc. (Computer Science) (2013 & Onwards) (Sem.-3) SEQUENCE SERIES AND CALCULUS

Subject Code: BCS-302 M.Code: 71774

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.

2. SECTION-B contains SIX questions carrying TEN marks each and students have to attempt ANY FOUR questions.

SECTION-A

1. Write briefly:

a) State Cauchy's Integral test.

b) Show that $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$ is convergent series.

c) Define Alternating series with example.

d) State Bertrand's test.

e) Show that $\{1 + (-1)^n\}$ oscillates finitely.

f) Define Beta function with example.

g) Show that
$$\int_{-1}^{1} |x| dx = 1$$

h) State second mean value theorem.

i) Test for convergence
$$\int_{0}^{1} \frac{\sin x}{x^{\frac{3}{2}}} dx$$

j) State Cauchy test for convergence of improper integral.

SECTION-B

- 2. a) State and Prove Sandwich theorem.
 - b) If $\lim a_n = a$ and $a_n \ge 0$, $\forall n$. Then $a \ge 0$.
- 3. a) Test for convergence of the series whose nth term is $\frac{n(n-1)...1}{n^n}$.
 - b) State and Prove Logarithmic Test.
- 4. a) State and Prove Leibnitz's test.
 - b) Prove that every absolutely convergent series is convergent.
- 5. State and Prove Darboux's theorem.
- 6. a) If a function f is monotonic on [a,b], then it is integrable on [a,b].
 - b) Show that a bounded function f is integrable on [a, b], if the set of its points of discontinuity has only a finite number of limit points.
- 7. Show that $\int_{0}^{\frac{\pi}{2}} \log \sin x dx$ is convergent and hence evaluate it.

NOTE: Disclosure of identity by writing mobile number or making passing request on any page of Answer sheet will lead to UMC case against the Student.

2 | M - 71774 (S3)-806