Roll No.

Total No. of Pages: 02

Total No. of Questions: 09

B.Tech. (2011 to 2017) (Sem.-1) ENGINEERING MATHEMATICS - I

> Subject Code: BTAM-101 Paper ID: [A1101]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C. have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B & C.
- 5. Symbols used have their usual meanings. Statistical tables, if demanded, may be provided.

SECTION-A

- Q1 a) Find the curvature at any point of the curve $y^2 = x^3 + 8$ at (1,3)
 - b) Find the radius of curvature at any point (r, θ) of polar curve $r = a(1 + \cos \theta)$.
 - c) Write down the formula for finding the volume of solid by revolving the area bounded by the curve y=f(x) and the line x=a, x=b and y=p about the line y=p.
 - d) Find the area of ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$. http://www.punjabpapers.com
 - e) Show that $\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{y^2-x^2}$ does not exist.
 - f) Find $\frac{\partial w}{\partial r}$ if $w = x + 2y + z^2$, $x = \frac{r}{s}$, $y = 2r + s^2$, z = 2r.
 - g) Write down the equation of hyperboloid of two sheet and draw its rough sketch.
 - h) A particle moves along the curve $x = t^3 + 1$, $y = t^2$, z = 2t + 5, where t is the time variable. Find the velocity at time t=1.
 - i) Determine whether $\vec{A} = 2xyz^3\hat{i} + x^2z^3\hat{j} + 3x^2yz^2\hat{k}$ is irrotational or not?
 - j) State Stoke's theorem.

1 M-54091 (S1)-400

SECTION-B

- Q2 a) Sketch the curve by considering all the salient features $y = x + \frac{1}{x}$.
 - b) Trace the polar curve : $r = a(1 + sin\theta)$, a > 0.
- Q3 a) Find the perimeter of the circle $x^2 + y^2 = 9$.
 - b) Find the surface of the solid generated by the revolution of Lemniscate $r^2 = a^2 cos 2\theta$ about initial line.
- Q4 a) If $u = tan^{-1} \left(\frac{x^3 + y^3}{x y} \right)$ prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial y \partial x} + y^2 \frac{\partial^2 u}{\partial y^2} = 2cos 3usimu$.
 - b) If u = f(y z, z x, x y), then prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.
- Q5 a) Expand $e^x log(1 + y)$ in powers of x and y upto third degree.
 - b) Find all the local maxima and minima of the function:

$$f(x,y) = x^3 + y^3 - 63(x + y) + 12xy$$

SECTION-C

- Q6 a) Evaluate $\iint (x^2 + y^2) dxdy$ over the circle $x^2 + y^2 = a^2$ by changing into polar coordinates. http://www.punjabpapers.com
 - b) Evaluate the volume of the sphere $x^2 + y^2 + z^2 = 1$ by using triple integration.
- Q7 a) If \vec{A} is vector function and Φ is a scalar function then prove that :

$$\nabla \times (\phi \vec{A}) = \phi(\nabla \times \vec{A}) + (\nabla \phi) \times \vec{A}$$

- b) if $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, prove taht $\nabla \cdot (r^n\vec{r}) = (n+3)r^n$, where $r = |\vec{r}|$.
- Q8. Evaluate $\iint_{S} \vec{A} \cdot \hat{n} \, ds$ where $\vec{A} = 12x^{2}y\hat{i} 3yz\hat{j} + 2z\hat{k}$ and S is the portion of the plane x + y + z = 1 included in the first quadrant.
- Q9. Verify Green's theorem for $\phi_c(xy+y^2) dx + x^2 dy$, where c is the boundary of the closed region bounded by $y = x^2$ and y = x.