

Total No. of Pages: 02

Total No. of Questions: 09

B.Tech (CHS) (2018 Batch) (Sem.-1) MATHEMATICS-I

Subject Code : BTAM-106-18 M.Code : 75368

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions EACH from SECTION B & C.

SECTION-A

1. Answer briefly:

- a) Are the vectors (1,3,4,2), (3,-5,2,2) and (2,-1,3,2) linearly independent?
- b) Find x, y, z and w, given that $3\begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} x & 5 \\ -1 & 2w \end{bmatrix} + \begin{bmatrix} 6 & x+y \\ z+w & 5 \end{bmatrix}$.
- c) Find the adjoint of the matrix $\begin{bmatrix} 1 & -1 \\ 3 & 0 \end{bmatrix}$. http://www.punjabpapers.com
- d) Define orthogonal matrix with an example.
- e) Define symmetric matrix with an example.
- f) If $\vec{r} = a \cos t \hat{i} + a \sin t \hat{j}$, then find $\nabla \frac{1}{r} = -\frac{\hat{r}}{r^2}$.
- g) If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, then find $\frac{d^2\vec{r}}{dt^2}$.
- h) If $\phi(x, y, z) = 3x^2y y^3z^2$, then find $\nabla \phi$ at the (1, -2, -1).
- i) Find constants a, b, c so that $\vec{F} = (x+2y+ax)\hat{i} + (bx-3yz)\hat{j} + (4x+cy+2z)\hat{k}$ is irrotational.
- j) If $\vec{F} = 3xy\hat{i} y^2\hat{j}$, evaluate $\int_C \vec{F} \cdot d\vec{r}$, where C is the curve in the xy plane $y = 2x^2$ from (0,0) to (1, 2).

1 M-75368 (S1)-2637

SECTION-B

- 2. a) Find the rank of matrix $\begin{bmatrix} 1 & -3 & 2 \\ 3 & -9 & 6 \\ -2 & 6 & -4 \end{bmatrix}$.
 - b) Solve x-y+z=2, 2x+3y-z=5, x+y-z=0 using Gauss elimination method.
- 3. Examine the consistency of the following system of linear equations and hence, find the solution 4x y = 12, -x + 5y 2z = 0, -2y + 4z = -8.
- 4. Express the matrix $\begin{bmatrix} 1 & 3 & -4 \\ -1 & -3 & 4 \\ 2 & 6 & -8 \end{bmatrix}$ as the sum of symmetric and skew symmetric matrices.
- 5. Find the Eigen values and Eigen vectors of the matrix $\begin{bmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 1 \end{bmatrix}$.

SECTION-C

- 6. Show that $\operatorname{grad} \operatorname{div} \vec{V} = \operatorname{Curl} \operatorname{Curl} \vec{V} + \nabla^2 \vec{V}$, where $\vec{V} = V_1 \hat{i} + V_2 \hat{j} + V_3 \hat{k}$.
- 7. If \vec{a} is a constant vector and \vec{r} is a position vector, show that

$$Curl\left(\frac{\vec{a}+\vec{r}}{r^3}\right) = -\frac{\vec{a}}{r^3} - \frac{3}{r^3}(\vec{a}\cdot\vec{r})\vec{r} .$$

- 8. Verify Green's theorem in the plane for $\int_C (xy + y^2) dx + x^2 dy$ where C is the closed curve of the region bounded by y = x and $y = x^2$.
- 9. Find $\iint_{S} \vec{F} \cdot \hat{n} ds$ where $\vec{F} = (2x+3z)\hat{i} (xz+y)\hat{j} + (y^2+2z)\hat{k}$ and S is the surface of the sphere having the centre at (3, -1, 2) and radius 3.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 | M-75368 (S1)-2637