Roll No.

Total No. of Pages: 02

Total No. of Questions: 18

B.Tech. (Mechnical Engg/Automobile Engg./ Civil Engg./CSE/ECE/Electrical & Electronics Engg.) (2018 & onwards) (Sem.-2)

MATHEMATICS-II

Subject Code : BTAM-203-18 M.Code : 76256

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B & C.

SECTION-A

Answer briefly:

- 1) Define Bernoulli's equation with an example.
- 2) Solve: $p^2 7p + 12 = 0$.
- 3) Solve: $(y \cos x + 1) dx + \sin x dy = 0$.
- 4) Write Clairaut's equation with example.
- 5) What is the significance of integrating factor.
- 6) Check the analyticity of $\log z$, where z = x + iy.
- 7) Define conformal mapping.
- 8) Expand $f(z) = \frac{z}{(z+1)(z+2)}$ about z = -2.
- 9) State Cauchy Integral formula.
- 10) Evaluate, $\oint_C \frac{e^z}{(z+1)^2} dz$ along the circle C: |z-3| = 3.

1 M-76256 (S1)-2037

SECTION-B

11) a) Find the power series solution about the origin of the equation

$$(1 - x^2) y'' - 2xy' + 6y = 0$$

- b) Solve $(2x \log x xy) dy + 2ydx = 0$.
- 12) a) Solve $ye^y dx = (y^3 + 2xe^y) dy$.
 - b) Solve: $(xv^2 + 2x^2v^3) dx + (x^2v x^3v^2)dv = 0$.
- 13) Solve by method of variation of parameters:

$$(D^2 + 2D + 1) y = 4e^{-x} \log x.$$

14) Solve:
$$x^2 \frac{d^3 y}{dx^3} + 3x \frac{d^2 y}{dx^2} + \frac{dy}{dx} = x^2 \log x$$

SECTION-C

- 15) a) Show that function f(z) defined by $f(z) = \frac{x^2 y^3 (x + iy)}{x^6 + v^{10}}$, $z \neq 0$, f(0) = 0, is not analytic at the origin even though it satisfies C-R equations.
 - b) Find the bilinear transformation that map the points z = 1, i, -1 into the points w = i, 0, -i
- a) Determine the analytic function whose real part is e^{2x} ($x \cos 2y y \sin 2y$).
 - b) Prove that $u = e^{-2xy} \sin(x^2 y^2)$ is harmonic. Find a function v such that f(z) = u + ivis analytic. Also express f(z) in terms of z.
- a) Use the concept of residues to evaluate $\int_0^{2\pi} \frac{dx}{5 + 4 \sin x}$.
 - b) Evaluate $\oint_C \frac{z-3}{(z^2+2z+5)} dz$ along the circle C: |z+1-i| = 2.
- 18) Expand $f(z) = \frac{(z-2)(z+2)}{(z+1)(z+4)}$ in the following given regions:
 - a) |z| < 1,
- b) 1 < |z| < 4, c) |z| > 4.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.