Roll No.

Total No. of Pages: 02

Total No. of Questions: 09

B.Tech.(Aerospace Engg.) (2012 Onwards)/B.Tech.(ANE) (Sem.-4)

NUMERICAL ANALYSIS

Subject Code: ANE-204 M.Code: 60512

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Answer briefly:

- a) Evaluate the sum $S = \sqrt{3} + \sqrt{5} + \sqrt{7}$ to four significant digits and find its absolute and relative errors.
- b) Write the Newton-Cote's quadrature formula.
- c) Using Euler's method, find y(1), given that y' = x + y and y(0) = 1.
- d) Write the normal equations for fitting a straight line to the data using a method of least squares.
- e) Find a root of $x^3 x 1 = 0$ using a bisection method correct to two decimal places.
- f) Evaluate $\int_{5}^{12} \frac{dx}{x}$ by Gauss quadrature formula.
- g) Using Taylor's series method find y(0.2) for $y' = 2y + 3e^x$, y(0) = 0.
- h) What is the condition of convergence of fixed point iteration method?
- i) Write a short note on finite difference method.
- j) Classify the partial differential equation :

$$y^2 u_{xx} - 2 xy u_{xy} + x^2 u_{yy} + 2u_x - 3u = 0$$

1 | M-60512 (S2)-1658

SECTION-B

- 2. Find a root of $xe^x = \cos x$ using Regula-falsi method correct to four decimal places.
- 3. Solve the following system of equation using the Gauss-Seidel iteration method:

$$6x + 3y + 1 = 9$$

$$2x - 5y + 2z = -5$$

$$3x + 2y + 8z = -4$$

4. Estimate the values of f(22) and f(42) from the following available data:

x:	20	25	30	35	40	45
f(x):	354	332	291	260	231	204

- 5. Use Runge-Kutta method to approximate y when x = 1.2. given that y = 1.2 when x = 1 and $\frac{dy}{dx} = 3x + y^2$.
- 6. Evaluate $\int_0^{\pi/2} \sin x \, dx$, using Simpson's 1/3 rule.

SECTION-C

- 7. Use the power method to find the largest eigen value and the associated eigen vectors of the matrix $A = \begin{bmatrix} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{bmatrix}$ starting with $[0, 0, 1]^t$ as initial eigen vector.
- 8. For IVP $y' = x y^2$, y(0) = 1, estimate y(0.8) using the Milne's predictor-corrector method with h = 0.2.
- 9. Solve the equation $\nabla^2 u = -10 (x^2 + y^2 + 10)$ over the square with sides x = 0 = y, x = 3 = y with u = 0 on the boundary and mesh length equal to one.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.