Roll No.						Total No. of Pages : 0

Total No. of Questions: 09

M.Sc. (Applied Physics) (2016 to 2017) (Sem.-1) SEMICONDUCTOR AND ELECTRONICS DEVICES

Subject Code: MPH-104 M.Code: 71604

Time: 3 Hrs. Max. Marks: 100

INSTRUCTION TO CANDIDATES:

1. Attempt FIVE questions in ALL including the compulsory question No-1.

1. Write briefly: $(2.5\times8=20)$

- a) Differentiate semiconductors, conductors and insulators on the basis of band gap.
- b) Why FET have better thermal stability?
- c) Define CMRR and its significance.
- d) What are the characteristics of a good comparator?
- e) Define the mesh analysis of a circuit.
- f) What are the performance characteristics of A/D and D/A converters?
- g) Give the comparison between synchronous & Asynchronous counters.
- h) Draw the logic diagram for SR latch using two NOR gates.
- 2. a) What do you understand by a Extrinsic Semiconductor? Explain in detail, the formation of P-type semiconductor. (10)
 - b) Explain the construction and working of P-channel FET. (10)
- 3. a) Give the capabilities and limitations of CMOS logic. Explain the CMOS transistor circuit. (10)
 - b) The data sheet enhancement type MOSFET reveals that $I_{D(ON)} = 10$ mA at $V_{GS} = -12V$ and $V_{T\ ON)} = -3V$. Is this device P-channel or N-channel? Find the value of I_D when $V_{GS} = -6V$

1 | 71604 (S17)-630

- 4. a) Two resistances when they are in series have an equivalent resistance of 9 ohms and when connected in parallel have an equivalent resistance of 2 ohms. Find the resistances and ratio of voltage and current sharing between the elements if the supply voltage is 50 V. (10)
 - b) For the network shown in figure: (10)
 - i) Determine the current through R=10 ohm resistor using Thevenin's theorem
 - ii) Verify the result using Norton's theorem
 - iii) Calculate the maximum power transfer through R and find the value of R.

FIG.1

- 5. a) Explain successive Approximation A/D converter in detail. (8)
 - b) The 741C configured as an inverting amplifier and following parameters are given A = 4×10^5 , $R_1 = 1 \text{K}\Omega$, $R_i = 35 \text{M}\Omega$, $R_f = 4.9 \text{K}\Omega$, $R_0 = 70 \Omega$, supply voltage = $\pm 15 \text{V}$, maximum output voltage swing= $\pm 13 \text{V}$, unity gain bandwidth= 0.6 MHz? Compute the closed loop parameters A_f , R_{if} , R_{of} , f_f and V_{ooT} . (12)
- 6. a) What are the ideal characteristics of an ideal operational amplifier? Derive the expression for voltage gain in non-inverting amplifier. (8)
 - b) Draw the astable multivibrator using 555 timer and derive its frequency of oscillation.

(12) **2 | 71604** (S17)-630

7.	a)	Explain the IC voltage regulator LM-317.	(10)									
	b)	Explain how a 4-bit R/2R register DAC works?	(10)									
8.	a)	Draw the circuit diagram of a 4-bit serial in / serial out shift register D flip- flops. Also draw its timing diagram.	using (10)									
	b)	With suitable example design a sequential circuit using JK-flip flop.	(10)									
9.	Write notes on any two:											
	a)	Triggering of bistable circuits	(10)									
	b)	Wein bridge oscillators	(10)									
	c)	VLSI circuits	(10)									

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

3 | 71604 (S17)-630