Roll No.
Total No. of Pages : 03
Total No. of Questions : 09

M.Sc. (Applied Physics) (2016 to 2017) (Sem.-1) SEMICONDUCTOR AND ELECTRONICS DEVICES Subject Code : MPH-104
 M.Code : 71604

Time: 3 Hrs.
Max. Marks: 100
INSTRUCTION TO CANDIDATES :

1. Attempt FIVE questions in ALL including the compulsory question No-1.
2. Write briefly :
$(2.5 \times 8=20)$
a) Differentiate semiconductors, conductors and insulators on the basis of band gap.
b) Why FET have better thermal stability?
c) Define CMRR and its significance.
d) What are the characteristics of a good comparator?
e) Define the mesh analysis of a circuit.
f) What are the performance characteristics of A / D and D / A converters?
g) Give the comparison between synchronous \& Asynchronous counters.
h) Draw the logic diagram for SR latch using two NOR gates.
3. a) What do you understand by a Extrinsic Semiconductor? Explain in detail, the formation of P-type semiconductor.
b) Explain the construction and working of P-channel FET.
4. a) Give the capabilities and limitations of CMOS logic. Explain the CMOS transistor circuit.
b) The data sheet enhancement type MOSFET reveals that $\mathrm{I}_{\mathrm{D}}(\mathrm{on})=10 \mathrm{~mA}$ at $\mathrm{V}_{\mathrm{GS}}=-12 \mathrm{~V}$ and $\mathrm{V}_{\text {T ON }}=-3 \mathrm{~V}$. Is this device P-channel or N-channel? Find the value of I_{D} when $V_{G S}=-6 V$
5. a) Two resistances when they are in series have an equivalent resistance of 9 ohms and when connected in parallel have an equivalent resistance of 2 ohms. Find the resistances and ratio of voltage and current sharing between the elements if the supply voltage is 50 V .
b) For the network shown in figure :
i) Determine the current through $\mathrm{R}=10$ ohm resistor using Thevenin's theorem
ii) Verify the result using Norton's theorem
iii) Calculate the maximum power transfer through R and find the value of R.

FIG. 1
5. a) Explain successive Approximation A / D converter in detail.
b) The 741C configured as an inverting amplifier and following parameters are given A $=4 \times 10^{5}, R_{1}=1 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{i}}=35 \mathrm{M} \Omega, \mathrm{R}_{\mathrm{f}}=4.9 \mathrm{~K} \Omega, \mathrm{R}_{0}=70 \Omega$, supply voltage $= \pm 15 \mathrm{~V}$, maximum output voltage swing $= \pm 13 \mathrm{~V}$, unity gain bandwidth $=0.6 \mathrm{MHz}$? Compute the closed loop parameters $\mathrm{A}_{\mathrm{f}}, \mathrm{R}_{\mathrm{if}}, \mathrm{R}_{\mathrm{of}}, \mathrm{f}_{\mathrm{f}}$ and $\mathrm{V}_{\mathrm{ooT}}$.
6. a) What are the ideal characteristics of an ideal operational amplifier? Derive the expression for voltage gain in non-inverting amplifier.
b) Draw the astable multivibrator using 555 timer and derive its frequency of oscillation.
7. a) Explain the IC voltage regulator LM-317.
b) Explain how a 4-bit $\mathrm{R} / 2 \mathrm{R}$ register DAC works?
8. a) Draw the circuit diagram of a 4-bit serial in / serial out shift register using D flip- flops. Also draw its timing diagram.
b) With suitable example design a sequential circuit using JK-flip flop.
9. Write notes on any two :
a) Triggering of bistable circuits
b) Wein bridge oscillators
c) VLSI circuits

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

