Roll No.

Total No. of Questions : 11

M.Sc (Chemistry) (2018 Batch) (Sem.-2)

## **INORGANIC CHEMISTRY-II**

Subject Code : CHL-411-18

M.Code: 75981

Time: 3 Hrs.

Max. Marks : 70

Total No. of Pages : 03

**INSTRUCTIONS TO CANDIDATES :** 

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains EIGHT questions carrying FIVE marks each and students have to attempt any SIX questions.
- 3. SECTION-C will comprise of two compulsory questions with internal choice in both these questions. Each question carries TEN marks.

### **SECTION-A**

- 1. Write briefly :
  - (a) The following OMCs are stable and have a second row transition metal at their center. Find out the metal.



- (b) Uranium-238 decays to form thorium-234 with a half-life of  $4.5 \times 10^9$  years. How many years will it take for 75% of the uranium-238 to decay?
- (c) Name the radioactive series whose end product is  $^{209}Bi_{83}$  and  $^{207}Pb_{82}$ .
- (d) Draw structures for (i)  $B_{12}H_{12}^{2-}$  and (ii)  $P_4S_{10}$ .
- (e) What is Geiglar-Nutall law?
- (f) If complex [W(Cp)<sub>2</sub>(CO)<sub>2</sub>] and [Ti(Cp)<sub>4</sub>]follows 18e- rule. What is the Hapticity of Cp?

**1** M-75981

(S38)-514

- (g) The reaction of CrCl<sub>3</sub> with liquid ammonia gives principally [Cr(NH<sub>3</sub>)<sub>5</sub>Cl]Cl<sub>2</sub> but when traces of KNH<sub>2</sub> is present the main product is [Cr(NH<sub>3</sub>)<sub>6</sub>]Cl<sub>3</sub>. Explain
- (h) Ligands such as nitrite, azide etc. are as strong nucleophiles as hydroxide, but these do not influence the rate of hydrolysis of ammine octahedral complexes. Explain why?
- (i) Formulate and draw the structure of a simplest neutral compound having Fe, cp and COT that conforms to follow the 18 electron rule.
- (j) Predict the structures of (i)  $[OS_8(CO)_{22}]^{2-}$  and (ii)  $[OS_{10}C(CO)_{24}]^{2-}$

#### **SECTION-B**

- 2. What are fluxional molecules? Discuss how the dynamic equilibria is achieved in allyl complexes. How is it characterized?
- 3. What are carboranes? Write its synthesis. How many isomers are possible for closo-decarborane?
- 4. Discuss the synthesis, structure and uses of Tungsten carbide.
- 5. Explain the chemistry of isopoly and heteropoly anions of molybdenum and tungsten.
- 6. Suggest methods for preparation of three isomers of [Pt(NH<sub>3</sub>)(py)(Cl)(Br)].
- 7. Discuss the mechanism of outer sphere (self-exchange) reactions of metal complexes.
- 8. Give an account of various components of a nuclear reactor.
- 9. Discuss the application of
  - (a) Co-60,
  - (b) I-131,
  - (c) C-14,
  - (d) C-11,
  - (e) TI-201 and
  - (f) Tc-99m in medicine.

#### **SECTION-C**

10. With the help of a suitable example, discuss synthesis, chemical reactivity and bonding in metallocenes.

#### OR

Give a brief description of subatomic particles found in the nucleus other than protons and neutrons. Also, discuss the nature of forces which hold nucleons together in a small nucleus.

11. Explain the SN1 (CB) mechanism of base hydrolysis and the factors affecting its rate of reaction. Also, explain why it cannot be explained by SN2 mechanism.

#### OR

Explain the bonding and structure of diborane, tetraborane and pentaborane. Show the relationship between closo, nido and arachno structures with no. of vertices = 7, 8, 9 and 10.

# NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.