Roll No. \square
Total No. of Questions : 08
Master of Science (Fashion Marketing Management) (Sem.-3) OPERATIONS RESEARCH
Subject Code : MSCFMM-310
M.Code : 72119

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. Attempt FIVE questions in total, selecting atleast ONE question from each UNIT.
2. All Question carry equal marks (12 marks)

UNIT-I

Q1) List and explain the various phases of Operations Research. Also discuss the scope of Operations Research in Garment Industry, giving examples.

Q2) List and discuss the various requirements and assumptions for formulating and solving Linear Programming problems.

UNIT-II

Q3) Solve the following LPP graphically :
Maximize $\quad Z=13 x_{1}+19 x_{2}$

Subject to the constraints:

$$
5 x_{1}-2 x_{2} \leq 10 ; \quad 7 x_{1}+6 x_{2} \geq 42 ; \quad 4 x_{1}-3 x_{2} \geq 12 ; \quad x_{1}, x_{2} \geq 0
$$

Q4) Solve the following Linear programming problem using simplex method :
Maximize $\quad Z=30 x_{1}+45 x_{2}$
Subject to the constraints :

$$
2 x_{1}+x_{2} \leq 6 ; \quad 4 x_{1}+5 x_{2} \leq 20 ; \quad x_{1}, x_{2} \geq 0
$$

UNIT-III

Q5) Given the supplying capacities from Plants P_{1}, P_{2}, P_{3} and demands of Markets M_{1}, M_{2}, M_{3} and M_{4}, solve the following transportation problem optimally :

	$\mathbf{M}_{\mathbf{1}}$	$\mathbf{M}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{3}}$	$\mathbf{M}_{\mathbf{4}}$	Supply			
$\mathbf{P}_{\mathbf{1}}$	12	11	16	13	$\mathbf{3 0}$			
$\mathbf{P}_{\mathbf{2}}$	14	12	11	13	$\mathbf{4 0}$			
$\mathbf{P}_{\mathbf{3}}$	15	17	12	11	$\mathbf{2 0}$			
Demand	$\mathbf{2 0}$	$\mathbf{1 5}$	$\mathbf{2 5}$	$\mathbf{3 0}$				

Q6) Given the profits from 4 Jobs being processed by 4 Operators, optimally assign the jobs to the operators, so as to maximize the total profits.

	$\mathbf{J}_{\mathbf{1}}$	$\mathbf{J}_{\mathbf{2}}$	$\mathbf{J}_{\mathbf{3}}$	$\mathbf{J}_{\mathbf{4}}$
$\mathbf{M}_{\mathbf{1}}$	3	6	8	4
$\mathbf{M}_{\mathbf{2}}$	1	9	6	7
$\mathbf{M}_{\mathbf{3}}$	4	3	5	2
$\mathbf{M}_{\mathbf{4}}$	7	6	9	5

UNIT-IV

Q7) Discuss and differentiate between PERT \& CPM. Briefly explain the scope of PERT \& CPM in your industry.

Q8) Given the processing times (in hours) of Jobs J_{1} to J_{6} on Machines M_{1} and M_{2}, obtain an optimal sequence for the jobs, so as to minimize the idle times and total cycle time on the two machines:

Machines	JOBS						
	$\mathbf{J}_{\mathbf{1}}$	$\mathbf{J}_{\mathbf{2}}$	$\mathbf{J}_{\mathbf{3}}$	$\mathbf{J}_{\mathbf{4}}$	$\mathbf{J}_{\mathbf{5}}$	$\mathbf{J}_{\mathbf{6}}$	
$\mathbf{M}_{\mathbf{1}}$	2	5	10	8	9	4	
$\mathbf{M}_{\mathbf{2}}$	7	4	8	9	6	5	

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

