Roll No. Total No. of Pages: 02 Total No. of Questions: 08 Master of Science (Fashion Marketing Management) (Sem.-3) OPERATIONS RESEARCH Subject Code: MSCFMM-310 M.Code: 72119 Time: 3 Hrs. Max. Marks: 60 ## **INSTRUCTIONS TO CANDIDATES:** - 1. Attempt FIVE questions in total, selecting atleast ONE question from each UNIT. - 2. All Question carry equal marks (12 marks) ## **UNIT-I** - Q1) List and explain the various phases of Operations Research. Also discuss the scope of Operations Research in Garment Industry, giving examples. - Q2) List and discuss the various requirements and assumptions for formulating and solving Linear Programming problems. ## **UNIT-II** Q3) Solve the following LPP graphically: Maximize $Z = 13x_1 + 19x_2$ Subject to the constraints: $5x_1-2x_2 \le 10$; $7x_1+6x_2 \ge 42$; $4x_1-3x_2 \ge 12$; $x_1, x_2 \ge 0$ Q4) Solve the following Linear programming problem using simplex method : Maximize $Z = 30x_1 + 45x_2$ Subject to the constraints: $2x_1 + x_2 \le 6;$ $4x_1 + 5x_2 \le 20;$ $x_1, x_2 \ge 0$ ## **UNIT-III** Q5) Given the supplying capacities from Plants P_1 , P_2 , P_3 and demands of Markets M_1 , M_2 , M_3 and M_4 , solve the following transportation problem optimally: | | \mathbf{M}_1 | M_2 | M_3 | M_4 | Supply | |----------------|----------------|-------|-------|-------|--------| | P ₁ | 12 | 11 | 16 | 13 | 30 | | P ₂ | 14 | 12 | 11 | 13 | 40 | | P ₃ | 15 | 17 | 12 | 11 | 20 | | Demand | 20 | 15 | 25 | 30 | | Q6) Given the profits from 4 Jobs being processed by 4 Operators, optimally assign the jobs to the operators, so as to maximize the total profits. | | J_1 | J_2 | J_3 | J_4 | |------------------|-------|-------|-------|-------| | \mathbf{M}_1 | 3 | 6 | 8 | 4 | | \mathbf{M}_{2} | 1 | 9 | 6 | 7 | | M_3 | 4 | 3 | 5 | 2 | | M_4 | 7 | 6 | 9 | 5 | **UNIT-IV** - Q7) Discuss and differentiate between PERT & CPM. Briefly explain the scope of PERT & CPM in your industry. - Q8) Given the processing times (in hours) of Jobs J₁ to J₆ on Machines M₁ and M₂, obtain an optimal sequence for the jobs, so as to minimize the idle times and total cycle time on the two machines: | Machines | JOBS | | | | | | | |----------|-------|-------|-------|-------|-------|-------|--| | | J_1 | J_2 | J_3 | J_4 | J_5 | J_6 | | | M_1 | 2 | 5 | 10 | 8 | 9 | 4 | | | M_2 | 7 | 4 | 8 | 9 | 6 | 5 | | NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student. **2** M-72119 (S17)-2626