(S17)-1825

Roll Tota	No. of Questions : 09	Total No. of Pages : 02
	M.Sc.(Chemistry) (2015 to 2017) QUANTUM CHEMISTR' Subject Code: MSCH-204 Paper ID: [A2803]	Y
Time: 3 Hrs. Max. Marks: 100		
INSTRUCTION TO CANDIDATES: 1. Attempt FIVE questions in all selecting ONE question from each section. All questions carry equal marks.		
	SECTION-A	
1.	a) State and explain postulates of quantum mechanics.	(8)
	b) What are Hermitian operators? Show that the operator	\hat{p}_x for the linear momentum is
	Hermitian.	(12)
2.	a) Solve the differential equation, $\frac{d^2\psi}{dx^2} + 4\frac{\pi^2}{\lambda^2}\psi = 0$, for	a stationary wave in a clamped
	string.	(10)
	b) Explain the following:	
	i) Addition of matrices.	
	ii) Hamilton equation of motion.	
	iii) Uncertainty principle.	(10)
	SECTION-B	
3.	a) Set up Schrodinger equation for the hydrogen atom in radial part.	polar form and solve it for the (12)
	b) Derive different term symbols for p ² configuration.	(8)
4.	Explain the following:	
	a) Angular momentum.	(5)
	b) Spin-Orbit coupling.	(5)
	c) Expectation values.	(5)
	d) Virial theorem.	(5)

1 | M-71665

SECTION-C

- 5. a) Discuss the time independent perturbation method for the calculation of energy and wave function of a perturbed system having non-degenerate states. (12)
 - b) Calculate the energy and normalized wave function for the ground state of hydrogen atom by applying variation method. (8)
- 6. a) Give a brief account of LCAO-MO approximation. (8)
 - b) Explain the following:
 - i) Configuration interaction.
 - ii) Hartee-Fock equations.
 - iii) Gaussian orbital. (12)

SECTION-D

- 7. a) Give a comparison between valence bond and molecular orbital approaches of chemical bonding. (10)
 - b) Write a short note on the electronic states of polyatomic molecules. (10)
- 8. a) Explain π electron approximation in conjugated systems. (5)
 - b) Set up the secular determinant for benzene molecule. Solve it for the energy and wave functions of different molecular orbitals. (15)

SECTION-E

9. Answer briefly:

 (10×2)

- a) Explain gradient and curl in vectors.
- b) Evaluate the commutator; [x, d/dx].
- c) Sketch the first four wave functions of linear harmonic oscillator.
- d) Explain why the s orbital is spherical in shape.
- e) Determine the effective nuclear charge for the 2s electron in carbon atom.
- f) A hydrogen torm is subjected to an electric field of strength F in the z direction. Calculate the first order correction to the energy for the ground state of the atom.
- g) What is the basic difference between variation and perturbation methods?
- h) Write the ground state anti-symmetric wave function for the helium atom in the determinant form.
- i) What are the molecular orbital wave functions of H_2 and N_2 molecules?
- j) What is the physical significance of the HMO coefficients?

2 M-71665 (S17)-1825