Roll No.

Total No. of Pages: 02

Total No. of Questions: 07

M.Sc. Mathematics (2017 Batch) (Sem.-1) COMPLEX ANALYSIS

Subject Code : MSM-103

Paper ID: [74722]

Time: 3 Hrs. Max. Marks: 80

INSTRUCTION TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of EIGHT questions carrying TWO marks each.
- 2. SECTION B & C. have THREE questions in each section carrying SIXTEEN marks each.
- 3. Select atleast TWO questions from SECTION B & C EACH.

SECTION-A

- 1) Answer briefly:
 - a) Evaluate $(1-i)^4$.
 - b) Prove that Re(iz) = -Im Z.
 - c) Check whether the function f(z) = lm(z) has a derivative at any point.
 - d) Find the singular points of $\frac{z^3 + i}{z^2 3z + 2}$.
 - e) Evaluate Log(-ei).
 - f) Write MitagLefler's inequality of complex integration and explain it.
 - g) State Rouche's theorem.
 - h) Discuss the types of singularities.

1 M-74722 (S30)-1401

SECTION-B

- 2) a) Find all roots of $(2i)^{1/2}$ and exhibit them geometrically.
 - b) Show that the function $f(z) = \overline{z}$ is nowhere differentiable.
- 3) a) Show that the function $f(z) = \frac{\overline{(z)}^2}{z} if \ z \neq 0$ and 0 $if \ z = 0$ is not differentiable at z = 0 but the CR equations are satisfied.
 - b) Use the polar form to show that $-(1 + i)^7 = -8(1 + i)$
- 4) a) Determine accumulation points of $z_n = \left(\frac{1}{n}\right)i^n (n = 1, 2,)$.
 - b) Establish Cauchy riemann equations.

SECTION-C

- 5) a) Show that $u(x,y) = \sinh x \sinh y$ is harmonic in some domain and find its harmonic conjugate of it.
 - b) Show that when $n = 0, \pm 1, \pm 2, \ldots$

$$(1+i)^{i} = \exp\left(-\frac{\pi}{4} + 2n\pi\right) \exp\left[\frac{i}{2}\log 2\right]$$

- 6) a) State and prove mitag lefler's inequality.
 - b) Determine the domain of analyticity of the function f and apply Cauchy Goursat theorem to show that $\int \frac{z^2}{z-3} dz = 0$, |z| = 1
- 7) a) State and prove maximum modulus principle.
 - b) Establish Schwarz lemma.

2 | M-74722 (S30)-1401