Roll No.

Total No. of Pages: 02

Total No. of Questions: 07

M.Sc. (Mathematics) (2017 Batch) (Sem.-1)

REAL ANALYSIS - I

Subject Code: MSM-102 M.Code: 74721

Time: 3 Hrs. Max. Marks: 80

INSTRUCTIONS TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of EIGHT questions carrying TWO marks each.
- 2. SECTION B & C have THREE questions in each section carrying SIXTEEN marks each.
- 3. Select atleast TWO questions from SECTION B & C EACH.

SECTION-A

- 1. a) Show that the series $\frac{2x}{1+x^2} + \frac{4x^3}{1+x^4} + \frac{8x^7}{1+x^8} + \dots$ is uniform convergent in $x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$.
 - b) Whether $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined by d(x, y) = |x| + |y| is a metric on \mathbb{R} ?
 - c) Evaluate $\int_0^4 xd([x]-x)$
 - d) Show that arbitrary union of closed sets may or may not be closed.
 - e) If X is a metric space and $E \subset X$, then interior of set E is open.
 - f) If $x, y \in \mathbb{R}$ and x > 0, then there is a positive integer n such that nx > y.
 - g) Show that the series $\sum \frac{\sin nx}{n^p}$ is uniformly and absolutely convergent for all real value of x and p > 1.
 - h) Is $\mathbb{R} [a, b]$ dense in \mathbb{R} , where a and b are two distinct real numbers.

SECTION-B

- 2. a) Show that the Thomae's function is discontinuous at rationals and continuous at irrationals.
 - b) Show that the space \mathbb{R} with usual metric is complete.

(8+8)

1 M-74721 (S30)-1042

- 3. If A and B are two subsets of a metric space (X, d), then:
 - a) If $A \subseteq B$, then $\overline{A} \subseteq \overline{B}$.
 - b) $A = \overline{A} \iff A$ is closed.
 - c) $\overline{(A \cup B)} = \overline{A} \cup \overline{B}$

d)
$$\overline{(A \cap B)} \subseteq \overline{A} \cap \overline{B}$$
 $(4 \times 4 = 16)$

4. If $f \in \mathbb{R}$ (α) on [a, b] iff for every $\varepsilon > 0$ there exists a partition P such that $U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon$. (16)

SECTION-C

- 5. a) If f is continuous and α is monotonically increasing on [a, b], then there exists a number $\eta \in [a, b]$ such that $\int_a^b f d\alpha = f(\eta)[\alpha(b) \alpha(a)]$.
 - b) If F is closed and E is compact subset of a compact metric space, then $F \cap K$ is compact. (8 + 8)
- 6. a) Show that finite intersection of open sets is open, that is, if G_1, \ldots, G_n are open sets then $\bigcap_{i=1}^{n} G_i$ is open.
 - b) The field \mathbb{Q} does not have least upper bound property. (8 + 8)
- 7. a) Show that $f_n(x) = \frac{nx}{1 + n^2 x^2}$, for all $x \in \mathbb{R}$ is point wise convergence but not uniform convergence.
 - b) Suppose $f_n \to f$ uniformly on a set E in a metric space. Let x be a limit point of E and suppose that $\lim_{t \to x} f_n(t) = A_n$, $n = 1, 2, 3, \ldots$ Then $\{A_n\}$ converges and $\lim_{t \to x} f(t) = \lim_{n \to \infty} A_n$. (6+10)

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 | M-74721 (S30)-1042