Roll No.

Total No. of Pages: 02

Total No. of Questions: 07

M.Sc. Mathematics (2018 Batch) (Sem.-1)

REAL ANALYSIS-I

Subject Code: MSM-102-18

M.Code: 75130

Time: 3 Hrs. Max. Marks: 70

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of FIVE questions carrying TWO marks each.
- 2. SECTION B & C have THREE questions each.
- Attempt any FOUR questions from SECTION B & C carrying FIFTEEN marks each.
- 4. Select atleast TWO questions from SECTION B & C each.

SECTION-A

I. Answer the following:

- a) Consider (\mathbb{R}, d) a metric space. Is $\bigcup_{n=1}^{\infty} (-n, n)$ cover of \mathbb{R} ?
- b) Let $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined as :

$$d(x,y) = \begin{cases} |x| + |y|; x \neq y \\ 0; x = y \end{cases}$$

Is d metric over \mathbb{R} ? Verify your result.

- c) Show that $\int_{0}^{3} x d([x] x) = \frac{3}{2}$
- d) Show that $\int_0^1 \left(\sum_{i=1}^n \frac{x^n}{n^2} \right) = \sum_{n=1}^\infty \frac{1}{n^2(n+1)}$.
- e) Show that the series $\frac{2x}{1+x^2} + \frac{4x^3}{1+x^4} + \frac{8x^7}{1+x^8} + \dots$ is uniform convergent in $x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$.

SECTION-B

- 2. a) Every bounded real sequence has a convergent subsequence. (10)
 - b) Suppose (X, d_X) , (Y, d_Y) , (Z, d_Z) are metric spaces. If $f: X \to Y$ and $g: Y \to Z$ are continuous then the composition $h = go f: X \to Z$ is continuous. (5)
- 3. a) Let (X, d) be a complete metric space and $A \subseteq X$. Then A is complete iff A is closed. (8)
 - b) Let A and B be countable subsets of a metric space (X, d). Then:
 - i) $A \cup B$ is countable

ii)
$$A \times B$$
 is countable. (7)

- 4. a) Compact subsets of metric spaces are closed. (7)
 - b) Closed subsets of a compact metric space are compact. (8)

SECTION-C

- 5. a) If f is monotonic on [a, b] and α is continuous on [a, b], then $f \in \mathbb{R}$ (α). (10)
 - b) Show that $f_n(x) = \frac{nx}{1 + n^2 x^2}$, for all $x \in \mathbb{R}$ is pointwise convergence but not uniform convergence. (5)
- Assume that α increases monotonically and α' ∈ R on [a, b]. Let f be a bounded real function on [a, b]. Then f ∈ R (α) iff f α' ∈ R (15)
 In that case ∫_a^b f dα = ∫_a^b f(x) α'(x) dx.
- 7. Suppose that $\{f_n\}$ is a sequence of functions, differentiable on [a, b] and such that $\{f_n(x_0)\}$ converges for some point x_0 on [a, b]
 - If $\{f'_n\}$ converges uniformly on [a, b] then $\{f_n\}$ converges uniformly on [a, b] to a function f, and $f'(x) = \lim_{n \to \infty} f'_n(x), a \le x \le b$. (15)

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 M-75130 (S37)-1046