Roll No.

Total No. of Pages: 02

Total No. of Questions: 07

M.Sc Mathematics (2017 Batch) (Sem.-3) TOPOLOGY

Subject Code: MSM-301 Paper ID: [75381]

Time: 3 Hrs. Max. Marks: 80

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of EIGHT questions carrying TWO marks each.
- SECTION B & C. have THREE questions in each section carrying SIXTEEN marks each.
- 3. Select atleast TWO questions from SECTION B & C EACH.

SECTION-A

1. Answer briefly:

- i) Let (X, τ) , where $X = \{1,2,3,4,5\}$, $\tau = \{\theta, X, \{2,3\}, \{1,4,5\}\}$ be a topological space. Find the derived set and exterior set of the set $A = \{1,3,4\}$.
- ii) Show that in a topological space (X, τ) , a point $x \in X$ is a boundary point of a set A iff it is a limit point of both A and X A.
- iii) In a topological space, prove that every closed subspace of a compact space is compact.
- iv) Show that the function $f:(|R, u) \to (|R,u)$ defined by $f(x) = x^2$ is open, where (|R, u) denotes the usual topological space.
- v) Define a separable topological space. Give an example.
- vi) Consider a topological space (X, τ) , where $X = \{1,3,5\}$, $\tau = \{\theta, X, \{1\}, \{3\}, \{1,3\}\}$. Check whether (X, τ) is T_1 or not? Justify your claim.
- vii) State the Urysohn's Lemma.
- viii) Can every topological space be generated by a metric space? Justify your claim.

1 | M-75381 (S30)-906

SECTION-B

- 2. State the properties of Kuratowski closure operator. Show that a topology can be defined in terms of Kuratowski closure operator.
- 3. Let $f: (X, \tau) \to (Y, \mu)$ be any map from a topological space (X, τ) to another topological space $\{Y, \mu\}$. Show that the following statements are equivalent:
 - i) The function *f* is continuous.
 - ii) The inverse image of each closed set is closed.
 - iii) The inverse image of each member of a subbase for the topology for Y is open.
 - iv) For each $X \in X$, the inverse image of each neighborhood of f(X) is a neighborhood of X.
 - v) For each $X \in X$ and each neighborhood U of f(X), there is a neighborhood V of X such that $f(V) \subset U$.
- 4. Show that every regular topological space with a countable basis is normal.

SECTION-C

- 5. i) Show that in a topological space, interior of any set A is the largest open subset of A.
 - ii) Prove that a subfamily β of a topology τ on X is a basis for τ iff each member of τ can be written as a union of members of β . (10)
- 6. Prove that a second countable topological space is Lindelof. Is the converse true? Justify your claim. (16)
- 7. i) Show that a Hausdorff space is both T_0 and T_1 but converse is not true. Give examples. (8)
 - ii) Show that the image of a connected space under a continuous map is connected. (8)

2 M-75381 (S30)-906