Roll No.

Total No. of Questions:07

M.Sc. Mathematics (2017 Batch) (Sem.-3) TOPOLOGY Subject Code : MSM-301 M.Code : 75381

Time: 3 Hrs.

Max. Marks : 80

Total No. of Pages : 02

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of EIGHT questions carrying TWO marks each.
- 2. SECTION B & C have THREE questions in each section carrying SIXTEEN marks each.
- 3. Select atleast TWO questions from SECTION B & C EACH.

SECTION-A

Q1. Answer briefly :

- a. Define bases for a topological space.
- b. Let (X, τ) be a topological space, where X = [1, 10] and τ is the indiscrete topology. What will be the derived set of $A = \{2, 3\}$.
- c. Define open mapping in a topological space. Give an example.
- d. Consider the usual topology on the set of natural numbers |N. Check whether this topological space is connected or not? Justify your claim.
- e. Let (X, τ) , where $X = \{1, 2, 3\}$, $\tau = \{\theta, X, \{1, 3\}, \{2\}\}$, be a topological space. Check whether this topological space is Hausdorff or not?
- f. Show that the property of a topological space being T_0 is hereditary property.
- g. Define a completely normal topological space. Give an example.
- h. State Tietze Extension theorem. $(8 \times 2 = 16)$

1 M-75381

SECTION-B

- Q2. Let (X,τ) be any topological space and $A \subset X$. Let B (A) denote the boundary of A. Then
 - a) Show that : (8)
 - i) $x \in B(A)$ if and only if $x \in \overline{A} \cap (\overline{X-a})$
 - ii) $x \in A^{\circ}$ iff $x \in A B(A)$.
 - b) Show that A is closed iff it contains all its limit points. (8)
- Q3. Show that every T_1 and regular topological space with a countable base is normal. (16)
- Q4. a) Prove that every compact subset A of a Hausdorff space X is closed. (8)
 - b) Let (Y, τ_Y) be a subspace of a topological space (X,τ) and let A and B be two subsets of Y. Then show that A and B are τ -separated if they are τ_Y -separated. (8)

SECTION-C

- Q5. a) Let B* be a non-empty collection of subsets of a non-empty set X. Then show that B* forms a sub-base for a unique topology τ for X.
 (8)
 - b) Let X and Y be two topological spaces. Then show that a mapping f : X → Y is continuous if and only if the inverse image of every member of a base for Y is open in X.
- Q6. Show that every second countable topological space is first countable, but converse is not true. (16)
- Q7. State and prove Urysohn's lemma.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

(16)