Roll No. \square Total No. of Pages: 02
Total No. of Questions : 07
M.Sc. Mathematics (2017 Batch) \quad (Sem.-3)
TOPOLOGY
Subject Code : MSM-301
M.Code : 75381

Time : 3 Hrs.
Max. Marks : 80

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of EIGHT questions carrying TWO marks each.
2. SECTION - B \& C have THREE questions in each section carrying SIXTEEN marks each.
3. Select atleast TWO questions from SECTION - B \& C EACH.

SECTION-A

Q1. Answer briefly :
a. Define bases for a topological space.
b. Let (X, τ) be a topological space, where $X=[1,10]$ and τ is the indiscrete topology. What will be the derived set of $\mathrm{A}=\{2,3\}$.
c. Define open mapping in a topological space. Give an example.
d. Consider the usual topology on the set of natural numbers $\mid \mathrm{N}$. Check whether this topological space is connected or not? Justify your claim.
e. Let (X, τ), where $X=\{1,2,3\}, \tau=\{\theta, X,\{1,3\},\{2\}\}$, be a topological space. Check whether this topological space is Hausdorff or not?
f. Show that the property of a topological space being T_{0} is hereditary property.
g. Define a completely normal topological space. Give an example.
h. State Tietze Extension theorem.

SECTION-B

Q2. Let (X, τ) be any topological space and $A \subset X$. Let $B(A)$ denote the boundary of A. Then
a) Show that:
i) $x \in \mathrm{~B}(\mathrm{~A})$ if and only if $x \in \bar{A} \bigcap(\overline{X-a})$
ii) $x \in \mathrm{~A}^{\circ}$ iff $x \in \mathrm{~A}-\mathrm{B}(\mathrm{A})$.
b) Show that A is closed iff it contains all its limit points.

Q3. Show that every T_{1} and regular topological space with a countable base is normal.
Q4. a) Prove that every compact subset A of a Hausdorff space X is closed.
b) Let $\left(\mathrm{Y}, \tau_{\mathrm{Y}}\right)$ be a subspace of a topological space (X, τ) and let A and B be two subsets of Y. Then show that A and B are τ-separated if they are τ_{Y}-separated.

SECTION-C

Q5. a) Let B* be a non-empty collection of subsets of a non-empty set X . Then show that B^{*} forms a sub-base for a unique topology τ for X.
b) Let X and Y be two topological spaces. Then show that a mapping $f: \mathrm{X} \rightarrow \mathrm{Y}$ is continuous if and only if the inverse image of every member of a base for Y is open in X .

Q6. Show that every second countable topological space is first countable, but converse is not true.

Q7. State and prove Urysohn's lemma.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

