

Total No. of Pages: 02

Total No. of Questions: 11

M.Sc (Physics) (Campus) (2016 Onwards) (Sem.-4) EXPERIMENTAL TECHNIQUES IN NUCLEAR PHYSICS AND PARTICLE PHYSICS

Subject Code: PHS-541 M.Code: 51232

Time: 3 Hrs. Max. Marks: 70

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains SEVEN questions carrying FIVE marks each and students have to attempt any SIX questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly:

- a) What is the importance of Fano factor in determining the energy resolution of a detector?
- b) What is minimum energy of gamma ray photon after Compton scattering, if original incident photon energy is 0.611 MeV?
- c) Why does pair production cannot occur in vacuum?
- d) Determine the cyclotron frequency of proton (mass of proton = 1.67×10^{-27} kg) in a magnetic field of 3.1 Tesla.
- e) Why Sodium Iodide (NaI) detector is activated with Thallium (Tl)?
- f) Why are hydrogenic materials used as moderators in nuclear reactors to slow down the neutrons?
- g) What is the main source of natural background radiation?
- h) What are applications of electron spectrometer?
- i) What is Plasma Effect?
- i) What are advantages of centre of mass frame?

1 | M-51232 (S36)-230

SECTION-B

- 2. What is the photoelectric effect? How is it different from Compton scattering? Why photoelectric effect cannot take place with free electron?
- 3. Distinguish between extendable and non-extendable dead time of a detector.
- 4. Explain the difference between inorganic scintillator and organic scintillator.
- 5. Explain the working principle of gas filled detector.
- 6. Write a short note on slow and fast neutron detection system.
- 7. What are the various sources of background radiations? Discuss the purpose of Compact Muon Solenoid in LHC experiment in detail.
- 8. Write a short note on recoil distance Doppler shifted attenuation method (RDM) for nuclear life time measurements.

SECTION-C

- 9. Explain principle, construction, working and limitations of Proportional Counter. Discuss the pulse formation and its shape of a proportional counter.
- 10. Derive the expression of depletion depth for semiconductor detectors.
- 11. What is radioactive ion beam? Discuss various methods of production of radioactive ion beam. Highlights the importance of ion beam.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 M-51232 (S36)-230