Roll Total	No. Total No. of Pages :	02
	M.Tech. (Power System) (2018 Batch) (Sem2) ADVANCED DIGITAL SIGNAL PROCESSING Subject Code: MTPS-203B-18 M.Code: 76135	
Time	: 3 Hrs. Max. Marks :	60
1.Atte	RUCTIONS TO CANDIDATES: empt any FIVE questions out of EIGHT questions. h question carries TWELVE marks.	
1.	Compute the 16-point DFT of the sequence.	12
	$x(n) = \begin{cases} n, & 0 \le n \le 15 \\ 0, & otherwise \end{cases}$	
2.	Explain the various properties of Z-transform in detail.	12
3.	A requirement exists to simulate in a digital computer an analog system with $\frac{1}{1}$	the
	normalized characteristics $H(s) = \frac{1}{s^2 + \sqrt{2}s + 1}$	12
	Obtain a suitable transfer function using impulse invariant and bilinear transfer methods. Assume a sampling frequency of 5 kHz and a 3 dB cut-off frequency of 1 kHz	
4.	Discuss the following:	
	a) A/D Conversion noise analysis	6
	b) Arithmetic round-off errors	6

1 M-76135 (S35)-1339

5. Determine the cascade and parallel realizations for the systems described by the system

function
$$H(z) = \frac{10(1-0.5z^{-1})\left(1-\frac{2}{3}z^{-1}\right)(1+2z^{-1})}{\left(1-\frac{3}{4}z^{-1}\right)\left(1-\frac{1}{8}z^{-1}\right)\left[1-\left(\frac{1}{2}+\frac{j}{2}\right)z^{-1}\right]\left[1-\left(\frac{1}{2}-\frac{j}{2}\right)z^{-1}\right]}$$
12

- 6. What do you mean by all zero and all pole models? Discuss in detail various properties of all zero and all pole models.
- 7. a) What do you mean by spectral analysis of deterministic signals? Explain the DFT-based Fourier analysis system for continuous-time signals.
 - b) Discuss in detail the design and implementation of a time-varying optimum FIR filter.
- 8. Explain the following
 - a) Comparison of IIR and FIR digital filters 6
 - b) Mean square error estimation 6

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 M-76135 (S35)-1339