Roll No.
Total No. of Pages : 03
Total No. of Questions: 18
B.Sc. (Honours) Mathematics (PIT) (2019 Batch)
(Sem.-1)
CALCULAS-I
Subject Code : UC-BSHM-101-19
M.Code : 77312

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION - B \& C. have FOUR questions each.
3. Attempt any FIVE questions from SECTION B \& C carrying EIGHT marks each.
4. Select atleast TWO questions from SECTION - B \& C.

SECTION-A

1. Show that a set S is bounded iff there exists a real number $M>0$ such that set $|x|<M \forall x \in S$.
2. Give an example of two functions f and g such that $f o g$ is the zero function even when f and g are not zero functions.
3. Differentiate $\sqrt{x} \operatorname{cosech} \sqrt{x}, x>0$.
4. Differentiate $\sin ^{-1}\left(3 x-4 x^{3}\right)$, with respect to x if $-\frac{1}{2}<x<\frac{1}{2}$.
5. If $f(x)=2 x^{\frac{2}{3}}, a=-1, b=1$, show that there is no real number c which satisfies the Lagrange's Mean Value theorem.
6. Evaluate $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\log \sin x}{1-\sin x}$.
7. Find the horizontal and vertical asymptotes of the curve $x^{2} y^{2}-a^{2}\left(x^{2}+y^{2}\right)=0$.
8. Find the nth derivative of $\frac{x}{1+3 x+2 x^{2}}$.
9. By using definition, prove that $f(x)=\left\{\begin{array}{ll}x^{2} \cos \frac{1}{x} & : \\ 0: & x \neq 0 \\ 0 & :\end{array}\right.$ is continuous at $x=0$.
10. Show that every point at which the sine curve $y=c \sin \frac{x}{a}$ meets the axis of x is a point of inflexion of the curve.

SECTION-B

11. (a) State and prove Archimedean property of real numbers.
(b) If $\lim _{x \rightarrow a} f(x)$ exists, then show that it is unique.
12. (a) Prove that $f(x)=x^{2}$ is continuous in R but is not uniformly continuous on R.
(b) Find all the asymptotes of the following curve :

$$
x^{3}+x^{2} y+x y^{2}+y^{3}+2 x^{2}+3 x y-4 y^{2}+7 x+2 y=0
$$

13. (a) If $f(x), g(x)$ and $h(x)$ are three polynomials of degree 2 , then prove that

$$
\phi(x)=\left|\begin{array}{ccc}
f(x) & g(x) & h(x) \\
f^{\prime}(x) & g^{\prime}(x) & h^{\prime}(x) \\
f^{\prime \prime}(x) & g^{\prime \prime}(x) & h^{\prime \prime}(x)
\end{array}\right| \text { is a constant polynomial. }
$$

(b) If $x \sqrt{1-y}+y \sqrt{1+x}=0$ and $x \neq y$, prove that $\frac{d y}{d x}=-\frac{1}{(x+1)^{2}}$.
14. (a) If $y=e^{m \sin ^{-1} x}$, show that $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-m^{2} y=0$.
(b) Show that $\frac{d}{d x}(\tan h(\log x))=\frac{4 x}{\left(x^{2}+1\right)^{2}}$.

SECTION-C

15. (a) Find the points of inflexion, interval of rising and falling, concave upwards and concave downwards for the curve $y=\frac{x^{2}+1}{x^{2}-1}$.
(b) Use Mean Value theorem to find the approximate value of $\sqrt{66}$.
16. (a) Find the values of p and q, so that the $\lim _{x \rightarrow 0} \frac{x(1+p \cos x)-q \sin x}{x^{3}}$ exists and its equal to 1.
(b) Use Maclaurin's Theorem (with Lagrange's form of remainder) to expand $\cos x$.
17. (a) Find the nth derivative of $\sin ^{2} x \cos 4 x$.
(b) If $y=\sin \left(m \sin ^{-1} x\right)$, show that $\lim _{x \rightarrow 0} \frac{y_{n+2}}{y_{n}}=n^{2}-m^{2}$.
18. (a) Write out the first three non-zero terms in Taylor's formula for the function $f(x)=\sin ^{2} x, x_{0}=0$.
(b) Use Cauchy's Mean Value theorem to evaluate $\lim _{x \rightarrow 1} \frac{\cos \frac{\pi x}{2}}{\log \frac{1}{x}}$.

NOTE : Disclosure of Identity by writing Mobile No. or Marking of passing request on any paper of Answer Sheet will lead to UMC against the Student.

