Roll No.

Total No. of Pages : 02
Total No. of Questions: 18
B.Sc. (Non Medical) (2018 \& Onwards) (Sem.-1)

DIFFERENTIAL CALCULUS
Subject Code : BSNM-105-18
M.Code : 75746

Time : 3 Hrs.
Max. Marks : 50

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying ONE mark each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Answer briefly :

1. Show that $\operatorname{Lim}_{n \rightarrow \infty}\left(\frac{2}{1} \cdot \frac{3}{2} \cdot \frac{4}{3} \ldots \cdot \frac{n}{n-1}\right)^{\frac{1}{n}}=1$.
2. Show that the series $\sqrt{\frac{1}{4}}+\sqrt{\frac{2}{6}}+\sqrt{\frac{3}{8}}+\ldots .+\sqrt{\frac{n}{2(n+1)}}+\ldots .$. does not converge.
3. Prove that the limit $\operatorname{Lim}_{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{x^{4} y^{4}}{\left(x^{2}+y^{4}\right)^{3}}$, does not exist.
4. Examine the derivability of $|x|$ at $x=0$.
5. State Rolle's Theorem.
6. Find $\frac{d y}{d x}$ when $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$.
7. Let $f: \mathrm{R}^{2} \rightarrow \mathrm{R}$ be defined by $f(x, y)=\left\{\begin{array}{ll}1, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{array}\right.$. Prove that the first order partial derivatives of f does not exist at $(0,0)$.
8. Show that the function $f(x)=x^{2}$ is uniformly continuous on $[-1,1]$.
9. Find $\operatorname{Lim}_{x \rightarrow 0} \frac{x-\tan x}{x^{3}}$.
10. If $a_{n}=\frac{(-1)^{n}}{n^{2}}, n$ is a natural number then show that $\underline{\operatorname{Lim}} a_{n}=0=\overline{\operatorname{Lim}} a_{n}$.

SECTION-B

11. If $a_{n} \rightarrow l$ then show that $x_{n}=\frac{a_{1}+a_{2}+a_{3}+\ldots .+a_{n}}{n} \rightarrow l$.
12. If $x^{x} \cdot y^{y} \cdot z^{z}=c$ then show that at $x=y=z, \frac{\partial^{2} z}{\partial x \partial y}=-(x \log e x)^{-1}$.
13. The function $f(x)$ is defined as $f(x)=\left\{\begin{array}{ll}a x^{2}+b, & \text { if } x>2 \\ 2, & \text { if } x=2 . \\ 2 a x-b, & \text { if } x<2\end{array}\right.$ If $f(x)$ is continuous everywhere then find the values of a and b.
14. If $x=\frac{1-t^{2}}{1+t^{2}}, y=\frac{2 t}{1+t^{2}}$ then prove that $\frac{d y}{d x}+\frac{x}{y}=0$.
15. If z be a homogeneous function of x and y of order n then show that $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=n z$ for all x and y of the domain of the function.

SECTION-C

16. a) Prove that the sequence $\left\{a_{n}\right\}$, where $a_{n}=8+\frac{1}{n^{3}}$ is a Cauchy sequence and find its limit.
b) Discuss the convergence or divergence of the series $\sum \frac{\sqrt{n^{2}+n+1}-\sqrt{n^{2}-n+1}}{n}$.
17. a) Show that the function $f(x, y)=\sin x+\sin y$ is differentiable at every point of R^{2}.
b) Show that the functions $u=x^{2}+y^{2}+z^{2}-2 z x, v=x+y-z, w=x-y-z$ are not independent of one another. Also find the relation between them.
18. a) State the prove Taylor's Theorem.
b) Evaluate $\operatorname{Lim}_{x \rightarrow \infty}\left(\sqrt{x^{2}+x+1}-x\right) \neq \operatorname{Lim}_{x \rightarrow \infty}\left(\sqrt{x^{2}+1}-x\right)$.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

