Roll No.
Total No. of Pages: 02
Total No. of Questions : 09

> B.Sc (Non Medical) (2018 Batch) (Sem.-2)
> INTEGRAL CALCULUS
> Subject Code : BSNM-205-18
> M.Code : 76303

Time : 3 Hrs.
Max. Marks : 50

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying ONE mark each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Solve the following :
a) Find the length of the arc of the curve $y=x^{\frac{3}{2}}$ from $(0,0)$ to $(4,8)$.
b) Evaluate $\int_{0}^{1} \int_{0}^{1}(x+2) d y d x$.
c) Find the value of $\int_{0}^{1} \int_{0}^{3} \int_{0}^{2} d y d z d x$.
d) Evaluate $\int \frac{1}{x(x+1)} d x$.
e) Evaluate $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin x d x$
f) Show that $\int_{0}^{\frac{\pi}{6}} \sin ^{7} 3 x d x=\frac{16}{105}$.
g) Evaluate $\int x^{2} e^{x} d x$.
h) Prove that $\int_{\alpha}^{\beta} f(y) d x=-\int_{\beta}^{\alpha} f(y) d x$.
i) Evaluate $\int \frac{d x}{a^{2}+x^{\frac{3}{2}}}$.

$$
\left(a^{2}+x^{2}\right)^{\frac{1}{2}}
$$

j) Write the formula for the volume of the solid generated by the revolution about the x axis, of the area bounded by the curves $y=f(x), y=g(x)$, and the ordinates $x=a, x=$ b.

SECTION-B

2. Evaluate $\int \sin ^{-1} \sqrt{x} d x$.
3. Find the volume of the spindle shaped solid generated by revolving the asteroid $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ axis the x-axis.
4. Find the area bounded by the curves $y^{2}=4 a x$ and $x^{2}=4 a y$.
5. Evaluate $\int \cosh ^{-1}\left(\frac{1+x^{2}}{1-x^{2}}\right) d x,|x|<1$.
6. Evaluate $\int_{0}^{\frac{\pi}{2}} \log \sin x d x$.

SECTION-C

7. If $U_{n}=\int_{0}^{\frac{\pi}{2}} x^{n} \sin x d x, n>1$. Prove that $U_{n}+n(n-1) U_{n-2}=n\left(\frac{\pi}{2}\right)^{n-1}$. Hence find the value of U_{5}.
8. Find the volume of a right circular cylinder with base radius r and height h.
9. a) Evaluate $\int_{0}^{1} \int_{x}^{1} \sin y^{2} d y d x$ by changing the order of integration.
b) Evaluate $\iint_{R}\left(x^{2}+y^{2}\right) d x d y$ where R is the region bounded by the four hyperbolas $x^{2}-y^{2}=2,9$ and $x y=2,4$.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

