Roll No.

Total No. of Pages: 02

Total No. of Questions: 16

B.Sc. (Computer Science) (2013 & Onwards) (Sem.-3)

SEQUENCE SERIES AND CALCULUS

Subject Code: BCS-302 M.Code: 71774

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.

2. SECTION-B contains SIX questions carrying TEN marks each and students have to attempt ANY FOUR questions.

SECTION-A

1. Test for convergence of $\sum \sin \frac{1}{n}$

2. Prove
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

3. Test the convergence of $\sum \frac{5^n}{4^n + 3}$

4. Test the convergence of $\int_0^\infty \frac{4a}{x^2 + 4a^2} dx$

5. Test the convergence of $\sum \frac{1}{\left(1+\frac{1}{n}\right)^{n^2}}$

6. Evaluate $\int_0^\infty \frac{x^8 (1 - x^6) dx}{(1 + x)^{24}}$

- 7. State necessary and sufficient condition for a bounded function to be Reimann-integrable.
- 8. State Cauchy Condensation test.

9. If [x] stands for integral part of x, then show that $\int_0^1 [5x] dx = 2$

10. State Cauchy's convergence criterion.

SECTION-B

11. a) Test the convergence of
$$\sum \frac{x^{n+1}}{(n+1)\sqrt{n}}$$

- b) Test the convergence of $\sum (-1)^{n-1} \frac{1}{n}$. Is the series absolutely convergent?
- 12. Test the convergence of $\frac{x}{1.2} + \frac{x^2}{3.4} + \frac{x^2}{5.6} + \dots \infty$.
- 13. Prove that $\int_0^{\pi/2} \sin^p \theta \cos^q \theta d\theta = \frac{1}{2} \beta \left(\frac{p+1}{2}, \frac{q+1}{2} \right).$
- 14. Let $f(x) = x^3$ on [0, a], a > 0. Show that f is R-integrable on [0, a] and compute $\int_0^a f(x) dx$
- 15. Show that $\int_0^1 \frac{\log(1+x)}{1+x^2} dx = \frac{\pi}{8} \log^2$.
- 16. Discuss the convergence of the series $\sum \frac{1.4.7....(3n-2)}{2.5.8...(3n-1)}$.

NOTE: Disclosure of identity by writing mobile number or making passing request on any page of Answer sheet will lead to UMC case against the Student.