

Total No. of Pages: 03

Total No. of Questions: 18

Bachelor of Science - Honours (Mathematics) (Sem.-3)

CALCULUS-III

Subject Code: UC-BSHM-301-19

M.Code: 78496

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B & C.

SECTION-A

1. Define Homogeneous function. Give an example.

2. If
$$J = \frac{(u, v)}{(x, y)}$$
 and $J' = \frac{(x, y)}{(u, v)}$ then prove that $JJ' = 1$.

- 3. The period of simple pendulum is $T = 2n\sqrt{(1/g)}$, find the maximum error in r due to the possible error upto 1% in l and 2.5% in g.
- 4. A lamina is bounded by the curves $y = x^2 3x$ and y = 2x. If density at any point is given by λxy . Find by double integration, the mass of the lamina.
- 5. If the density of any point of the solid contant of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{2^2}{C^2} = 1$ is given by $\rho = xyz$. Find the coordinates of the centre of gravity of the solid.
- 6. Find the area lying between the parabola $y = 4x x^2$ and the line y = x.
- 7. If $u = e^{xyz}$, find the value of $\frac{\partial^2 u}{\partial x \partial y \partial z}$
- 8. Evaluate $\int_0^x \int_0^x \int_0^{x+y} e^{x+y+z} dxdydx$
- 9. Transform $\iint dx dy$ into polar coordinates.
- 10. Explain graphically the meaning of partial derivative.

1 M-78496 (S1)-236

SECTION-B

11. i) Investigate the continuity of the function

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0) \end{cases}$$

at the origin.

- ii) Evaluate the limit $\lim_{\substack{x\to 1\\y\to 1}} \frac{x(y-1)}{y(x-1)}$ display style $\frac{x(y-1)}{y(x-1)}$.
- 12. i) State Euler's theorem on homogeneous functions and hence prove that if $u = x \ln^{-1} \left(\frac{x^2 + y^2}{x + y} \right)$, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3 \tan(u)$.
 - ii) If $f = \theta = t^n e^{-r^2/4t}$, what value of n will make $\frac{1}{r^2} \frac{\theta \left(r^2 \frac{\partial u}{\partial r} \right)}{\partial r} = \frac{\partial \theta}{\partial t}$.
- 13. i) If $u = x^2 + y^2 + z^2$ and $x = e^{2t}$, $y = e^{2t} \cos 3t$, $z = e^{3t} \sin 3t$. Find $\frac{du}{dt}$ as a total derivatives and verify the result by direct substitution.
 - ii) If $u = x \log(x y)$, where $x^2 + y^3 + 3xy = 1$. Find $\frac{du}{dx}$.
- 14. i) If $u = \frac{x+y}{1-xy}$ and $v = \tan^{-1}x + \tan^{-1}y$. Find $\frac{d(u,v)}{d(x,y)}$ are u and v functionally related if so, find the relationship.
 - ii) If $u = x^2 y^2$, v = 2xy and $x = r \cos \theta$, $y = r \sin \theta$, then find $\frac{d(u, v)}{d(r, \theta)}$.

SECTION-C

- 15. Expand $f(x, y) = \tan -1(y/x)$ in powers of (x 1) and (y 1) up to third degree terms. Also, compute f(1.1, 0.0) approximately.
- 16. i) Show that the rectangular solid of maximum volume that can be inscribed in a sphere is a cube.
 - ii) The temperature T at any point (x, y, z) in space is $T = 400xyz^x$. Find the highest temperature on the surface of the unit sphere $x^2 + y^2 + x^2 = 1$.
- 17. i) Change the order of integration in $r = \int_0^1 \int_{x^2}^{2-x} xy dx dy$ and hence evaluate.
 - ii) Evaluate $\iint_{\mathbb{R}} (x+y)^2 dx dy$, where R is the parallelogram in the xy-plane with vertices (1, 0), (3, 1), (2, 2), (0, 1) using the transformation u = x + y and v = x 2y.
- 18. i) Find the volume bounded by the xy-plane, the cylinder $x^2 + y^2 = 1$ and the plane x + y + z = 3.
 - ii) Find by triple integration, the volume of the sphere $x^2 + y^2 + z^2 = a^2$.

NOTE: Disclosure of Identity by writing Mobile No. or Marking of passing request on any paper of Answer Sheet will lead to UMC against the Student.

3 | M-78496 (S1)-236