Roll No.
Total No. of Questions: 18
B.Sc. (Non Medical) (2018 Batch) (Sem.-3)

DIFFERENTIAL EQUATIONS
Subject Code : BSNM-306-18
M.Code : 76905

Time: 3 Hrs.
Max. Marks : 50

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying ONE mark each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Write briefly :

1. Show that $\frac{1}{x^{2}}$ is integrating factor of $y d x-x d y=0$.
2. What is Geometrical meaning of Differential equation?
3. Define Legendre's linear equation.
4. Define linear differential equation with constant coefficients.
5. Define linear \& Non-Linear Partial Differential equation.
6. Form Partial Differential equation by eliminating arbitrary constants from the relation

$$
Z=a x e^{y}+\frac{1}{2} a^{2} e^{2 y}+b .
$$

7. Find general solution of $3 r+10 s+3 t=0$.
8. Define complementary function \& particular integral.
9. Find general solution of $\left(\mathrm{D}^{2} \mathrm{D}^{\prime}-3 \mathrm{DD}^{\prime 2}+2 \mathrm{D}^{\prime 3}\right) \mathrm{z}=0$.
10. Solve $y=p x+a p(1-p)$.

SECTION-B

11. Solve $\left(x^{2}+y^{2}+2 x\right) d x+2 y d y=0$.
12. Solve the equation $y^{\prime \prime}+2 y^{\prime}+y=\left(e^{x}-1\right)^{-2}$ by the method of reduction of order.
13. Find the equation of integral surfaces of $x p+y q=z$, which passes through $y+x=1$, $y z=1$.
14. Solve by Charpit's method $q=3 p^{2}$.
15. Solve $x+\frac{p}{\sqrt{\left(1+p^{2}\right)}}=a$.

SECTION-C

16. a) Find the orthogonal trajectories of all parabolas with vertices at the origin $\&$ foci on the y-axis.
b) Solve $\left(\mathrm{D}^{2}+1\right) y=\tan x$ by method of variation of parameters.
17. a) Find the equation of surfaces orthogonal to $\mathrm{F}\left(\frac{x}{z}, \frac{y}{z}\right)=0$
b) Find the general solution of $(r-2 s+t)=e^{x+2 y}+x^{3}$.
18. a) Solve $\left(\mathrm{D}^{4}+3 \mathrm{D}^{3}+3 \mathrm{D}^{2}+\mathrm{D}\right) y=e^{-x}$.
b) Solve the system of equations $\frac{d y}{d x}+y=z+e^{x}, \frac{d z}{d x}+z=y+e^{x}$.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

