Roll No.

Total No. of Pages: 02

Total No. of Questions: 18

B.Sc. (Non Medical) (2018 Batch) (Sem.-3)

DIFFERENTIAL EQUATIONS

Subject Code: BSNM-306-18 M.Code: 76905

Time: 3 Hrs. Max. Marks: 50

INSTRUCTIONS TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying ONE mark each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Write briefly:

- 1. Show that $\frac{1}{x^2}$ is integrating factor of $y \, dx x \, dy = 0$.
- 2. What is Geometrical meaning of Differential equation?
- 3. Define Legendre's linear equation.
- 4. Define linear differential equation with constant coefficients.
- 5. Define linear & Non-Linear Partial Differential equation.
- 6. Form Partial Differential equation by eliminating arbitrary constants from the relation

$$Z = axe^{y} + \frac{1}{2}a^{2}e^{2y} + b.$$

- 7. Find general solution of 3r + 10s + 3t = 0.
- 8. Define complementary function & particular integral.
- 9. Find general solution of $(D^2D' 3DD'^2 + 2D'^3)$ z = 0.
- 10. Solve y = px + ap(1 p).

1 | M-76905 (S105)-315

SECTION-B

- 11. Solve $(x^2 + y^2 + 2x) dx + 2y dy = 0$.
- 12. Solve the equation $y'' + 2y' + y = (e^x 1)^{-2}$ by the method of reduction of order.
- 13. Find the equation of integral surfaces of xp + yq = z, which passes through y + x = 1, yz = 1.
- 14. Solve by Charpit's method $q = 3p^2$.
- 15. Solve $x + \frac{p}{\sqrt{(1+p^2)}} = a$.

SECTION-C

- 16. a) Find the orthogonal trajectories of all parabolas with vertices at the origin & foci on the *y*-axis.
 - b) Solve $(D^2 + 1)y = \tan x$ by method of variation of parameters.
- 17. a) Find the equation of surfaces orthogonal to $F\left(\frac{x}{z}, \frac{y}{z}\right) = 0$
 - b) Find the general solution of $(r-2s+t) = e^{x+2y} + x^3$.
- 18. a) Solve $(D^4 + 3D^3 + 3D^2 + D) y = e^{-x}$.
 - b) Solve the system of equations $\frac{dy}{dx} + y = z + e^x$, $\frac{dz}{dx} + z = y + e^x$.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.