Roll No. \square Total No. of Pages: 02
Total No. of Questions : 07

> B.Sc.(CS) (2013 \& Onwards) (Sem.-6)
> LINEAR ALGEBRA
> Subject Code : BCS-602
> M.Code : 72782

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains SIX questions carrying TEN marks each and students have to attempt any FOUR questions.

SECTION-A

Q1 Answer the followings in short :
a) Define Groups.
b) Define Field.
c) Define Vector Spaces.
d) Define Linear dependent.
e) Define Quotient Space.
f) Define Linear Transformations.
g) If T is a linear operator on V such that $T^{2}-T+I=0$. Prove that T is invertible.
h) Define isomorphism.
i) Define Nullity of a Matrix.
j) If V and W are finite dimensional vector spaces such that $\operatorname{dim} V=\operatorname{dim} W$. Then prove that a linear transformation $T: V \rightarrow W$ is one-one iff T is onto.

SECTION-B

Q2 Prove that the union of two subspaces is a subspace if and only if one of them is contained in other.

Q3 Write the vector $\mathrm{v}=(1,-3,5)$ belongs to the linear space generated by S , where $S=\{(1,2,1),(1,1,-1),(4,5,-2)\}$ or not?

Q4 State and prove Existence theorem for basis.
Q5 State and prove Rank-Nullity theorem.
Q6 Let T be a linear operator on R^{2} defined by $\mathrm{T}(x, y)=(4 x-2 y, 2 x+y)$ Find the matrix of T relative to the basis $B=\{(1,1) ;(-1,0)\}$.

Q7 Prove that the characteristic and minimal polynomials of an operator or a matrix have the same roots except for multiplicities.

NOTE : Disclosure of identity by writing mobile number or making passing request on any page of Answer sheet will lead to UMC case against the Student.

