Roll No. Total No. of Pages: 02

Total No. of Questions: 07

B.Sc.(Computer Science) (2013 & Onwards) (Sem.-4)

NUMBER THEORY Subject Code: BCS-401 Paper ID: [72317]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains SIX questions carrying TEN marks each and students has to attempt any FOUR questions.

SECTION-A

1. Write briefly:

- a) Express 2875 as sums of four square.
- b) State Division Algorithm. Show that $3n^2 1$ is not a perfect square.
- c) Find all primitive Pythagorean triples for x = 60.
- d) Show that any two consecutive Fibonacci numbers are relatively primes.
- e) State fundamental Theorem of Arithmetic.
- f) Prove that [2x] 2[x] is either 0 or 1.
- g) Find all solutions of $x^5 x \equiv 0 \pmod{5}$.
- h) State Chinese Remainder Theorem.
- i) Prove that ϕ (*n*) is even for $n \ge 3$.
- j) If $mn \neq 0$ then show that $(m, n) \lceil m, n \rceil = |mn|$.

1 M- 72317 (S3)-1606

SECTION-B

- 2. State Euclidean Algorithm. Find gcd of 710 and 68 using it and then find integers x and y satisfying (710, 68) = 710x + 68y.
- 3. Prove that the product of any n consecutive integers is divisible by n!. Also show that $n^3 n$ is divisible by 6.
- 4. Define Linear Congruence. Show that 89/2⁴⁴–1 and 97/2⁴⁸-1 using the theory of congruence.
- 5. State and prove Mobius inversion formula. Also find all integers n such that $(\phi)(n) = \phi(2n)$ where ϕ is an Euler's ϕ function.
- 6. State and prove Fermat's Theorem. Also verify that 17 divides $11^{104} + 1$ using it.
- 7. State Wilson's Theorem. Show that $\left\lceil \frac{(n-1)!}{n} \right\rceil$ is even for n > 4 using it.

2 | M- 72317 (S3)-1606