Roll No.
Total No. of Pages : 02
Total No. of Questions : 07
B.Sc.(Computer Science) (2013 \& Onwards)
(Sem.-4)
NUMBER THEORY
Subject Code : BCS-401
M.Code : 72317

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains SIX questions carrying TEN marks each and students have to attempt any FOUR questions.

SECTION-A

1. Answer the followings in short :
a) Prove that $3 a^{2}-1$ is never a perfect square.
b) Show that any two consecutive Fibonacci number are relatively primes.
c) State fundamental theorem of Arithmetic. Also prove number of primes are infinite.
d) Find all primitive Pythagorean triples for $\mathrm{x}=40$.
e) If (x, y, z) is primitive solution of $x^{2}+y^{2}=z^{2}$ then show $(x, y)=(y, z)=(z, x)=1$.
f) Show that $2^{37}-1$ is divisible by 233 .
g) Find all integers n such that $\phi(n)=\phi(2 n)$
h) State Fermat's Theorem. Show that 1763 is a composite number.
i) Using Wilson's Theorem, show that 17 is a prime number,
j) Prove that $\phi\left(p^{a}\right)=p^{a}-p^{a-l}$ for prime p and $\alpha \geq 1$.

SECTION-B

Q2. State and prove division algorithm. Show that the square of any integer is either of the forms $3 k$, or $3 k+1$ using it.

Q3. Show that the positive primitive solutions of $x^{2}+y^{2}=z^{2}$ with x as even are given by $x=2 a b, y=a^{2}-b^{2}, z=a^{2}+b^{2}$ where a and b are integers of opposite parity and $(a, b)=1$ and $a>b>0$.

Q4. Let p be a prime number. Prove that $x^{2} \equiv-1(\bmod p)$ has a solution iff $p=2$ or $p \equiv 1(\bmod 4)$.

Q5. Derive a relation between Mobius and Euler- Totient function. Also verify Mobius inversion formula for $n=20$.

Q6. Let p be a prime. Then prove that
(i) $(p-1)!\equiv-1(\bmod p)$
(ii) $a^{p} \equiv a(\bmod p)$ for every integer a.

Q7. State and prove Chinese Remainder Theorem. Also find the least positive integer that give remainder 1, 2, 3 when divided by $3,4,5$ respectively.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

