Roll No. \square

$$
\text { Total No. of Pages: } 02
$$

Total No. of Questions : 07
B.Sc. (Computer Science) (2013 \& Onwards)
(Sem.-6)
REAL ANALYSIS
Subject Code : BCS-601
Paper ID : [72781]
Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains SIX questions carrying TEN marks each and students has to attempt any FOUR questions.

SECTION-A

1. Write briefly :
(a) Determine the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{\underline{n}}{n^{n}} x^{n}$.
(b) State Fourier series for odd and even functions.
(c) State a test of uniform convergence of sequence of functions.
(d) Define Rotation and Inversion.
(e) Differentiate between the pointwise convergence and uniform convergence of sequence of functions.
(f) What are Cauchy-Riemann equations?
(g) What is a harmonic function? Is the function $x^{3}-3 x y^{2}$ harmonic?
(h) Show that the function $e^{x}(\cos y+i \sin y)$ is holomorphic and find its derivative.
(i) Define the limit of a function of a complex variable.
(j) State Abel's theorem on power series.

SECTION-B

2. Define an analytic function of a complex variable. If $f(z)$ is an analytic function of z, prove that

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2} .
$$

3. (a) State and prove the test for uniform convergence of sequence of functions.
(b) Check for uniform convergence the sequence $\left\{f_{n}(x)\right\}$ where $f_{n}(x)=x^{n-1}(1-x)$ in [0, 1].
4. Define the Euler's formula for a Fourier Series. Expand $f(x)=x \sin x ; 0<x<2 \pi$ as a Fourier series.
5. (a) Show that $u=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$ is harmonic and find its harmonic conjugate.
(b) Show that the function $f(z)=x y+i y$ is everywhere continuous but not analytic.
6. (a) Define a Mobius transformation. Find the Mobius transformation which maps $1,-i, 2$ into 0,2 , - i respectively.
(b) State and prove Abel's theorem on Power Series.
7. Let $\left\{f_{n}\right\}$ be a sequence of real valued functions on a metric space X which converges uniformly to f on X . If each f_{n} is continuous on X , then f is also continuous on X .
