Roll No.
Total No. of Pages : 03
Total No. of Questions : 09
B.Tech. (Agriculture Engineering) (Sem.-1)

ENGINEERING MATHEMATICS-I
Subject Code: BTAG-101-22
M.Code : 92759

Date of Examination : 13-01-23
Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION - B \& C. have FOUR questions each.
3. Attempt any FIVE questions from SECTION B \& C carrying EIGHT marks each.
4. Select atleast TWO questions from SECTION-B \& C.

SECTION-A

1. Write short notes on :
a) Evaluate the triple integral $\int_{0}^{2} \int_{0}^{2} \int_{0}^{y z} x y z d x d y d z$.
b) State stoke's theorem in the plane.
c) Evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} d y d x$.
d) Show that the vector field given by $\overrightarrow{\mathrm{F}}=\left(-x^{2}+y z\right) \hat{i}+\left(4 y-z^{2} x\right) \hat{j}+(2 x z-4 z) \hat{k}$ is solenoidal.
e) State homogeneous function.
f) Find the gradient of the function $\varphi=y^{2}-4 x y$ at $(1,2)$.
g) Prove that $\operatorname{curl}(\operatorname{grad} \phi)=0$
h) If $f(x, y)=x^{2} y+x y^{3}-3 x+4 y-6$, find $\frac{\partial f}{\partial x}$.
i) Define Eigen values.
j) Explain nature of rank of a Matrice.

SECTION-B

2. Use Gauss Jordan Method to find the inverse of a matrix $\left[\begin{array}{cccc}2 & 4 & 3 & 2 \\ 3 & 6 & 5 & 2 \\ 2 & 5 & 2 & -3 \\ 4 & 5 & 14 & 14\end{array}\right]$.
3. If $\mathrm{U}=\operatorname{cosec}^{-1}\left(\frac{x^{\frac{1}{2}}+y^{\frac{1}{2}}}{x^{\frac{1}{3}}+y^{\frac{1}{3}}}\right)^{\frac{1}{2}}$, prove that

$$
x^{2} \frac{\partial^{2} \mathrm{U}}{\partial y^{2}}+2 x y \frac{\partial^{2} \mathrm{U}}{\partial x \partial y}+y^{2} \frac{\partial^{2} \mathrm{U}}{\partial y^{2}}=\frac{13+\tan ^{2} \mathrm{U}}{144}
$$

4. Prove that:
a) $\operatorname{curl}(\phi \overrightarrow{\mathrm{A}})=(\operatorname{grad} \phi) \times \overrightarrow{\mathrm{A}}+\phi \operatorname{curl} \overrightarrow{\mathrm{A}}$.
b) Evaluate $\int_{c}\left(x^{2}+x y\right) d x=\left(x^{2}+y^{2}\right) d y$, where c is the square formed by the lines $x=$ $\pm 1, y= \pm 1$.
5. Evaluate $\int_{0}^{1} \int_{x^{2}}^{2-x} x y d y d x$ by changing order of integration.

SECTION-C

6. Show that the Matrix $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$ is similar to the diagonal Matrix. Also find the transforming Matrix and the diagonal Matrix.
7. If $\theta=t^{n} e^{\frac{-r^{2}}{4 t}}$, find the value of n which will make $\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \theta}{\partial r}\right)=\frac{\partial \theta}{\partial t}$.
8. Verify Gauss Divergence theorem for $\overrightarrow{\mathrm{F}}=\left(x+y^{2}\right) \hat{i}-2 x \hat{j}+2 y z \hat{k}$ taken over tetrahedron bounded by coordinate planes and the plane $2 x+y+2 z=6$.
9. Calculate volume of the solid bounded by the planes

$$
x=0, y=0, z=0, x+y+z=1 .
$$

NOTE : Disclosure of Identity by writing Mobile No. or Marking of passing request on any paper of Answer Sheet will lead to UMC against the Student.

