Roll No. $\square$
Total No. of Questions: 18
B.Tech. (Computer Science Engineering / Information Technology / ECE) (Sem.-4)
MATHEMATICS -III / ENGINEERING MATHEMATICS -III
Subject Code : BTCS402
M.Code : 56605

## Time : 3 Hrs.

Max. Marks : 60

## INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

## SECTION-A

## Write briefly :

1) Define periodic functions.
2) State the sufficient condition for the existence of Laplace transforms.
3) Define analytic and conjugate functions of a complex variable.
4) Define Homgenous linear partial differential equation.
5) Define critical region of the testing.
6) Define Eigen value and eigen vector of a matrix.
7) Define Binomial and Poisson distributions.
8) Write the Laplace transform of $t^{2} \sin 2 t$.
9) Write the difference between chi-square and $t$-distributions.
10) Differentiate between Euler's and modified Euler's method for solving the ordinary differential equation.

## SECTION-B

11) Obtain the Fourier series of $x \sin x$ as a cosine series in $(0, \pi)$. Hence show that $\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{5.7}-\ldots . . \infty=\frac{\pi-2}{4}$.
12) Using the Laplace transform, prove that

$$
\int_{0}^{\infty} \frac{e^{-a t}-e^{-b t}}{t} d t=\log \frac{b}{a}
$$

13) Solve the following equation by Gauss elimination method :

$$
2 x+y+z=10 ; 3 x+2 y+3 z=18 ; x+4 y+9 z=16
$$

14) The theory predicts the proportion of beans, in the four groups $A, B, C$ and $D$ should be 9:3:3:1. In an experiment among 1600 beans, the numbers in the four groups were 882 , 313, 287 and 118. Does the experimental result support the theory? (The table value of $\chi^{2}$ for 3 d.f. at $5 \%$ level of significance is 7.81 ).
15) Show that $f(z)=x y^{2}(x+i y)+\left(x^{2}+y^{4}\right), z \neq 0$ and $f(z)=0, z=0$ is not analytic at $z=0$, although $\mathrm{C}-\mathrm{R}$ equations are satisfied at the origin.

## SECTION-C

16) a) Marks obtained by a number of students are assumed to be normal distributed with mean 50 and variance 36 . If 4 students are taken at random, what is the probability that exactly two of them will have marks over 65? Given that $\int_{0}^{2} \Phi(z) d z=0.4772$ where $z$ is $N(0,1)$.
b) The intelligence quotients (IQ) of 16 students from B.Tech. Ind year showed a mean of 107 and a standard deviation of 10 , while the IQs of 14 students from B.Tech. Ist year showed a mean of 112 and a standard deviation of 8 . Is there a significant difference between the IQs of the two groups at significance levels of 0.05 ? Given that critical value of 28 degree of freedom with $5 \%$ level of significance is 2.05 .
17) Find the largest eigen value and the corresponding eigen vector of the matrix

$$
\left[\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]
$$

18) Solve the following by Euler's modified method:

$$
\frac{d y}{d x}=x+y, y(0)=1
$$

at $x=0.3$ with step size 0.1 .

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

