Roll No.

Total No. of Pages: 02

Total No. of Questions: 18

B.Tech.(Electronics & Electrical) (2012 to 2017)
B.Tech.(Electrical & Electronics) (2013 Onwards)
(Sem.-6)

# DIGITAL SIGNAL PROCESSING

Subject Code: BTEEE-601 M.Code: 71130

Time: 3 Hrs. Max. Marks: 60

#### **INSTRUCTIONS TO CANDIDATES:**

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

#### **SECTION-A**

### Write briefly:

- 1. Write down the basic elements of digital signal processing system?
- 2. What do you understand by LTI system?
- 3. Write Laplace and Z transform of sin(t) and cos(t).
- 4. Define sampling & Nyquist rate?
- 5. What is Goertzel algorithm? State its applications.
- 6. Distinguish between FIR and IIR filter.
- 7. What is the use of pipelining in DSP processor?
- 8. What is Gibbs phenomena?
- 9. What are benefits of representing a digital filter in the block diagram form?
- 10. State the desirable features of DSP processors.

**1** M-71130 (S2)-877

### **SECTION-B**

- 11. Find the z-transform of each of the following sequences:
  - a)  $x(n) = 2^n u(n) + 3\left(\frac{1}{2}\right)^n u(n)$ .
  - b)  $x(n) = \cos(n\omega_0)u(n)$ .
- 12. Discuss Linear filtering approach for the computation of DFT.
- 13. Consider the causal linear shift-invariant filter with system function :

$$H(z) = \frac{1 + 0.875z^{-1}}{(1 + 0.2z^{-1} + 0.9z^{-2})(1 - 0.71^{-1})}$$

Draw a signal flow graph for this system using

- a) Direct form I
- b) Direct form II
- 14. Draw the architecture of TMS 320C5X.
- 15. Describe different types of finite word length effects present in Digital filters and ways to rectify them, with the help of examples.

## **SECTION-C**

- 16. Find the Kaiser window parameters,  $\beta$  and N, to design a low-pass filter with a cut off frequency  $\omega_c = \pi/2$ , a stop band ripple  $\delta_s = 0.002$ , and a transition bandwidth no larger than  $0.1~\pi$ .
- 17. Discuss the importance of ROC in digital signal processing.
- 18. Write a short notes on:
  - a. Bilinear Transformation
  - b. Circular convolution

NOTE: Disclosure of identity by writing mobile number or making passing request on any page of Answer sheet will lead to UMC against the Student.

**2** | M-71130 (S2)-877