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Roll No.                         Total No. of Pages : 02 
Total No. of Questions : 07  

M.Sc. Mathematics (2018 Batch)    (Sem.-1) 
REAL ANALYSIS-I 

Subject Code : MSM-102-18 
M.Code : 75130 

Time : 3 Hrs.                                                                      Max. Marks : 70 

INSTRUCTIONS TO CANDIDATES : 
 1. SECTION-A is COMPULSORY consisting of FIVE questions carrying TWO marks 

each. 
 2. SECTION - B & C have THREE questions each. 
 3. Attempt any FOUR questions from SECTION B & C carrying FIFTEEN marks 

each. 
 4. Select atleast TWO questions from SECTION - B & C each. 

  

SECTION-A 

 l. Solve the following : 

  a) Find the radius of convergence of the series 
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  b) Prove that x
na n  is uniformly convergent on [0,  1] if na  converges uniformly 

in [0,  1] 

  c) Discuss the convergence and uniform convergence of sequence {e–nx}. 

  d) Find the radius of convergence of the series 
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  e) State Dirichlet’s test for uniform convergence. 

 

SECTION-B 

 2. a) Let an be a series of complex numbers which is absolutely convergent then every 
rearrangements of an are convergent and all converges to same sum. 

  b) State and prove Abel’s theorem on power series. 
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 3. a) Prove that both the power series 
0

n
nn

a x

  and the corresponding series of 

derivatives 1
0

n
nn

na x 
  have the same radius of convergence. 

  b) State and prove Cauchy’s General Principle of uniform convergence. 

 4. a) Prove that if a function is continuous in a closed interval, then it is bounded therein. 

  b) Prove that the union of two connected sets, having non-empty intersection, is 
connected. 

 

SECTION-C 

 5. a) Show that the sequence {fn}, where 2( )
1n

xf x
nx




 converges uniformly on R. 

  b) Show that the sequence {fn} where fn : R  R defined by fn (x) = x/n  x  R, n  N, 
is convergent point wise but not uniformly. 

 6. a) Let  be monotonically increasing function on [a, b] and fn  R () on [a, b], for       
n = 1, 2, 3, …, such that fn  f uniformly on [a, b]. Then f  R () on [a, b] and 

lim
b b

n na a
f d f d   . 

  b) Prove that 
1

sinnn
a nx

  and 
1

cosnn
a nx

 are uniformly convergent on R if 

1
| |nn
a

  converges. 

 7. a) Let {an} be a decreasing sequence of positive terms. Prove that the series an sin x 
converges uniformly on R if, and only if, nan  0 as n  . 

  b) Suppose that the sequence {fn} of functions converges uniformly to f on a set E in a 
metric space X. Let x be the limit point of E and such that lim ( )t x nf t  = An (n = 1, 2, 
3, ….). Then {An} converges and lim ( ) limt x n nf t A  . 

 
 
NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any 

page of Answer Sheet will lead to UMC against the Student. 
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