Roll No. \square
Total No. of Questions : 11

M.Sc. (Physics) (2018 Batch) (Sem.-1)
 MATHEMATICAL PHYSICS-I
 Subject Code: MSPH-411-18
 M.Code : 75122

Time : 3 Hrs.
Max. Marks : 70

INSTRUCTIONS TO CANDIDATES:

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains SEVEN questions carrying FIVE marks each and students have to attempt any SIX questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Answer briefly :
a) Find $\Gamma\left(-\frac{5}{2}\right)$.
b) Solve the integral $\int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{\sin \theta}}$.
c) Define Dirac delta function in one dimension. Also state any four properties.
d) Define isolated singularity with suitable example.
e) Find whether $f(z)=|z|^{2}$ is an analytic function or not?
f) A coin is tossed three times. What is the probability of atleast two tails in succession?
g) Write down the solution of the differential equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1 / 9\right) y=0$.
h) Discuss where Hermite and Legendre polynomials are used in physics?
i) State Dirichlet and Neumann boundary conditions.
j) Find standard deviation of the function $f(x)=\frac{1}{2 \sqrt{2} \pi} e^{-\frac{x^{2}}{8}}$

SECTION-B

2. Derive duplication formula for gamma function.

$$
\Gamma(2 n)=\frac{1}{\sqrt{\pi}} 2^{2 n-1} \Gamma(n) \Gamma\left(n+\frac{1}{2}\right)
$$

3. Prove the orthonormality condition of Legendre polynomials.
4. a) Show that $\sqrt{\pi x / 2} J_{1 / 2}(x)=\sin x$.
b) Show that $\lim _{x \rightarrow 0} J_{1}(x) / x=\frac{1}{2}$.
5. Given an analytic function $f(x, y)=\phi(x, y)+i \psi(x, y)$, where $\phi(x, y)=x^{2}+4 x-y^{2}+2 y$. Find $\psi(x, y)$.
6. Find Laurent series of the function $f(z)=\frac{1}{(z-1)(z-2)}$ about $z=0$ for the region a) $|z|<1$ and b) $1<|z|<2$.
7. Discuss Binomial, Normal and Poissonian distributions.
8. A uniform bar of length l is heated so that its both ends are at 0 temperature. If initially the temperature is given as $f(x)=c x(l-x) / l^{2}$, where c is a constant. Find the temperature of different points at time t.

SECTION-C

9. State and prove Cauchy residue theorem and use it to evaluate $\int_{0}^{2 \pi} \frac{d \theta}{(5-3 \sin \theta)^{2}}$.
10. a) Prove Rodrigues' formula $P_{l}(x)=\frac{1}{2^{l} l!} \frac{d^{l}}{d x^{l}}\left(x^{2}-1\right)^{l}$.
b) Express the polynomial $3 x^{2}+x-1$ as a linear combination of Legendre polynomials.
11. a) Solve the integral $\int_{0}^{1}(\ln x)^{1 / 3} d x$.
b) Solve the integral $\int_{0}^{3} x^{2} \delta(x+2) d x$.
c) For the following function, locate and classify the singularities in finite z plane.
(i) $f(z)=\frac{1}{\sin \frac{\pi}{z}}$.
(ii) $\quad f(z)=\frac{\sin z}{z^{4}}$.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

