Roll No. Total No. of Pages: 03 Total No. of Questions: 07 M.Sc. (Mathematics) (2018 Batch) (Sem.-2) NUMERICAL ANALYSIS Subject Code: MSM-205-18 M.Code: 75966 Time: 3 Hrs. Max. Marks: 70 # **INSTRUCTIONS TO CANDIDATES:** - 1. SECTION-A is COMPULSORY consisting of FIVE questions carrying TWO marks each. - 2. SECTION B & C. have THREE questions each. - 3. Attempt any FOUR questions from SECTION B & C carrying FIFTEEN marks each. - 4. Select atleast TWO questions from SECTION B & C each. ## **SECTION-A** ## l. Write short notes on: - a) Define the terms Rounding and Chopping. - b) Define convergence of iteration methods. - c) Evaluate $\left(\frac{\Delta^2}{E}\right) x^3$. - d) Evaluate the integral $I = \int_0^1 \sqrt{1 x^2} dx$ taking h = 0.25 using Simpson's Rule. - e) Describe initial value and boundary Value problems. ## **SECTION-B** 2. a) Obtain the rate of convergence of Newton-Raphson's method. b) Solve the following system of equations using Gauss-Jordan method. $$4x - 5y - 2z = 16.8$$ $$-5x + y + 4z = 7.4$$ $$3x - 2y + z = -0.7$$ 3. a) Solve the following equations, correct upto two decimal places using Gauss-Jacobi method. $$-4x + y + 10z = 21$$ $$2x + 8y - z = -7$$ $$5x - y + z = 14$$. - b) Find the positive root of the equation $x^2 6e^{-x} = 0$, by Regula falsi method correct upto two places of decimal. - 4. a) Use Muller's Method to find the zeros, real or complex of the polynomial $x^7 1$. - b) Using Power Method find the dominant latent root and associated latent vector of the matrix. A where $$A = \begin{vmatrix} 5 & 10 \\ 2 & 6 \end{vmatrix}$$ # **SECTION-C** 5. a) Values of \log_e^x are tabulated below for $x=1.25(0.25)\ 2.50$: | X | 1.25 | 1.50 | 1.75 | 2.00 | 2.25 | 2.50 | |------------|--------|--------|--------|--------|--------|--------| | \log_e^x | 0.2234 | 0.4055 | 0.5596 | 0.6932 | 0.8109 | 0.9163 | Compute the value of \log_e^x at x = 1.70 and 2.15 using Stirling's formula. Use upto 4th term in the formula. b) Find the solution of the following differential equation by Taylor's series method so that the truncation error is no greater than $\frac{1}{2} \times 10^{-4}$ for $x \le 0.2$, $$\frac{d^2y}{dx^2} + x\frac{dy}{dx} = y = 0; \ y(0) = 0.y'(0) = 1$$ - 6. a) Evaluate the integral $I = \int_0^2 \sqrt{1+4x}$, by Simpson's Rule with two intervals and Simpson's Rule with four intervals. Compare the result with exact value and explain the difference in computer values. - b) Solve the differential equation $\frac{dy}{dx} = x^2 + y^2 2$, for x = 0.3, by Milne's predictor corrector method. Compute the starting values at x = -0.1, 0, 0.1, 0.2 by Taylor's expansion about x = 0 where y(0) = 1, taking first four non-zero terms. Show your calculations upto four decimals only. - 7. a) Solve the differential equation y'' = xy, for x = 0.5 in a single step, using Runge-Kutta fourth order method when the initial conditions are given to be y(0) = 0 and y'(0) = 1. - b) Following values of the function $y = x^3$ are provided | X | 0 | 1 | 2 | 3 | |---|---|---|---|----| | Y | 0 | 1 | 8 | 27 | Compute cube root of 21 from the above data using Lagrange's method. Discuss the error in the result. NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student. **3** M-75966 (S37)-872