Roll No. Total No. of Pages: 02

Total No. of Questions: 11

M.Sc. (Physics)EL-II (2018 Batch) (Sem.-3)
PLASMA PHYSICS

Subject Code: MSPH537-18 M.Code: 76756

Time: 3 Hrs. Max. Marks: 70

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains SEVEN questions carrying FIVE marks each and students have to attempt any SIX questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly:

- a) Write three conditions plasma must satisfy.
- b) Compute λ_D and N_D for the earth's ionosphere with $n = 10^6$ cm⁻³ and $KT_e = 0.1$ eV.
- c) Give the basic working principle of energy analyzers.
- d) Explain, how the combination of grad-drift velocity and curvature-drift velocity work on plasma particles?
- e) What are the consequences of particle motion in large amplitude waves?
- f) Write the macroscopic parameters of plasma.
- g) Differentiate between lower hybrid and upper hybrid waves in plasma.
- h) Write one and two fluid equations for plasma.
- i) What do you understand by plasma instabilities?
- j) Write Vlasov equation and its properties.

1 M-76756 (S36)-1823

SECTION-B

- 2. Explain Debye shielding in plasma and derive its formula as : $\lambda_D = \left(\frac{KT_e}{4\pi ne^2}\right)^{1/2}$
- 3. Derive ionization expressions in terms of E/P based on Townsend's theory of gas discharge and discuss different regimes of E/P in a discharge.
- 4. Describe the principle of double probe technique for plasma diagnostics, draw its circuit diagram, explain working/procedure and V-I characteristics with due explanation to each portion of the curve.
- 5. Define Curvature-B drift and derive the expression for curvature-B drift velocity of guiding centre.
- 6. Define Ion-Acoustic waves plasma; explain their origin and derive the expression for their dispersion relation.
- 7. Derive the expression for dielectric constant of field free and cold magnetized plasma.
- 8. What do you mean by plasma stability analysis? Derive the dispersion relation for high frequency plasma oscillations considering two-stream instability in plasma.

SECTION-C

- 9. Give a brief review about following applications of plasma:
 - a) Controlled thermonuclear fusion
 - b) Space Physics
 - c) MHD energy conversion
 - d) Ion propulsion
 - e) Gas lasers
- 10. Using appropriate equations of motions for a particle in time varying electric and magnetic field derive the expression for velocity and positions coordinates.
- 11. Derive the dispersion relation for the propagation of electromagnetic waves in plasma when $E_1 \perp B_0$.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 M-76756 (S36)-1823