Roll No.

Total No. of Pages: 02

Total No. of Questions: 09

M.Sc.(Chemistry) (2015 to 2017) (Sem.-3)

SPECTROSCOPY – II Subject Code: MSCH-302 Paper ID: [72620]

Time: 3 Hrs. Max. Marks: 100

INSTRUCTIONS TO CANDIDATES:

1. Attempt FIVE questions in ALL including the Question No. 1 which is COMPULSORY and selecting ONE EACH from each UNIT.

Q1 Answer briefly:

- a) After ionization and fragmentation occur, what does the mass spectrometer do to provide a mass spectrum?
- b) How will you identify a particular signal in PMR arise due to NH or OH proton?
- c) Why greater sensitivity is required to record ¹³C NMR spectrum compared to that PMR spectrum?
- d) Why Mossbauer Spectroscopy is well suited for biological applications?
- e) What is NQR? In which region of electromagnetic spectrum, NQR spectra are observed?
- f) What is nuclear quadrupole coupling constant?
- g) Predict different peaks in the mass spectrum of ethyl chloride.
- h) What is a *metastable* ion?
- i) Of the two molecules N2 and O2, which will show an ESR spectrum and why?
- j) Predict the ESR spectrum of methyl radical.

 $(2 \times 10 = 20)$

UNIT-I

- Q2 a) Discuss the principle of NMR spectroscopy and explain how this technique is being used in elucidating the structure of the molecules. (10)
 - b) What is chemical shift? In the 300 MHz spectrum of a certain compound there are two triplets separated by 3 ppm. The observed coupling constant is 7 Hz. What is this separation in Hz? In a 500 MHz spectrum, what is the separation between these signals in Hz and in ppm? (5)
 - c) Explain magnetic anisotropy effect in NMR by taking suitable examples. (5)

1 M-72620 (S17)-1158

Q3	a) What is coupling constant? Describe spectroscopy.	various types of proton couplings in PM (8)	
	b) Write short notes on :	(12))
	i) Correlation spectroscopy	ii) MRI	
	iii) NOE	iv) Chemical shift reagents.	
	UNIT	-II	
Q4	a) Explain the principle of NQR.	(8)
	b) Explain how NQR spectroscopy helps in	studying hydrogen bonding in crystals? (6))
	c) From the drawing of energy level diagram having $/ = 5/2$ and assuming (a) $\eta = 0$ (b)	m calculate transition frequencies for a nucleu $\eta \neq 0$. (6)	
Q5	a) Discuss the applications of ESR spectra.	(10))
	b) Which valence state of copper <i>i.e.</i> Cu ⁺ ior	n or Cu ⁺² ion, will show ESR and why? (5))
	c) Outline some of the differences between A	VMR and NQR . (5))
	UNIT-	ш	
Q6	a) Explain the principle and applications of l	Mossbauer Spectroscopy. (15))
		bauer nucleus of mass 9.4684×10^{-26} kg, whe 0^{-11} m. What is the Doppler shift of the γ -ra (5)	ıy
Q7	a) What is isomer shift? Explain with examp	oles. (5))
	b) Outline briefly:)
	i) Quadrupole interaction.		
	ii) Magnetic hyperfine interaction in Mos.	sbauer spectroscopy.	
	c) Draw the energy level schemes and trans and $l_e = 3/2$.	sitions for a <i>Mossbauer</i> nucleus having $l_g = {}^{1}$ (5)	
	UNIT-	-IV	
Q8	a) Explain the following by taking suitable e	examples: (6))
	i) Nitrogen rule.		
	ii) McLafferty rearrangement.		
	b) Describe various ionization techniques in	mass spectrometry. (8))
	c) Describe the fragmentation pattern of alco	phols and esters. (6))
Q9	a) Explain the appearance of m/z 44 in the n	mass spectrum of $CH_3CH_2CH_2CHO$. (6))
	b) Give the applications of mass spectrometr	ry. (6))
	c) Account for the major peaks of each of their formation:	the following compounds. Write equations for	r
	i) $CH_3OCH_2CH_2CH_3$: $m/z = 31, 45, 59,$	and 74.	
	ii) CH ₃ CH ₂ COOCH ₃ : m/z 57, 59 and 88.	(8))

2 | M-72620 (S17)-1158