Total No. of Pages : 02

Roll No.

Total No. of Questions: 07

M.Sc Mathematics (2017 Batch) (Sem.-1) MATHEMATICAL METHODS Subject Code : MSM-105 Paper ID : [74724]

Time: 3 Hrs.

Max. Marks: 80

INSTRUCTION TO CANDIDATES :

- SECTION-A is COMPULSORY consisting of EIGHT questions carrying TWO 1. marks each.
- 2. SECTION - B & C. have THREE questions in each section carrying SIXTEEN marks each.
- Select atleast TWO questions from SECTION B & C EACH. 3.

SECTION-A

- 1. **Answer briefly :**
 - a. Find the inverse laplace transform of $\frac{s}{s^4 + s^2 + 1}$.
 - b. State the convolution theorem.
 - c. Establish a relationship between fourier and laplace transforms.
 - d. Enlist some applications of transforms to boundary value problems.
 - e. Find the Z transform and radius of convergence of $f(n) = 2^n$, n < 0
 - f. Show that the geodesics on a plane are straight curves.
 - g. Prove that the sphere is the solid figure of revolution in which given surface area has maximum volume
 - h. Define Kernal of the integral equation.

SECTION-B

- 2. a. Find the Laplace transform of sin 2t sin 3t.
 - b. Find the inverse transform of $\frac{s^2 3s + 4}{s^3}$.
- 3. a. Define convolution of two functions f(x) and g(x) over the interval $(-\infty, \infty)$ and Convolution theorem for Fourier transforms.
 - b. Find the Fourier cosine transform of e^{-x^2}
- 4. Find the Z transforms of the following :
 - a. $(n+1)^2$
 - b. $\sin(3x+5)$
 - c. Cosh $n\theta$
 - d. ne^{an}

SECTION-C

- 5. Solve the boundary value problem y'' y' + x = 0 ($0 \le x \le l$), y(0) = y(l) = 0 by Rayleigh Ritz Method.
- 6. Use Galerkin's method to solve the boundary value problem which claims that the curve which extremizes the functional I such that;

 $I = \int_0^{\pi/4} (y''^2 - y^2 + x^2) dx$ under the condition y(0) = 0, y'(0) = 1, $y(\pi/4) = y'(\pi/4) = 1/\sqrt{2}$ is $y = \sin x$. Compare the approximate solutions with exact solutions.

7. Transform the differential equation y'' + y = x, y(0) = 1, y'(1) = 0 to a fredholm integral equation, finding the corresponding Green's function.