Roll No. \square
Total No. of Questions : 07
M.Sc Mathematics (2017 Batch) (Sem.-2)

PARTIAL DIFFERENTIAL EQUATIONS
Subject Code : MSM-204
Paper ID : [75011]
Time : 3 Hrs.
Max. Marks : 80

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of EIGHT questions carrying TWO marks each.
2. SECTION - B \& C. have THREE questions in each section carrying SIXTEEN marks each.
3. Select atleast TWO questions from SECTION - B \& C EACH.

SECTION-A

1. Answer the following :
a) Form a partial differential equation by eliminating a, b from $z=(x+a)(y+b)$.
b) Solve $\mathrm{p}+\mathrm{q}=z / a$.
c) Solve $\mathrm{p}^{2}+\mathrm{q}^{2}=1$.
d) Find the complete integral of $z=p x+q y+p^{2}+q^{2}$.
e) Solve $r=a^{2} t$.
f) Find particular integral of $\left(D^{3}-10 D^{2} D^{\prime}+D^{\prime 3}\right) z=\cos (2 x+3 y)$.
g) State Laplace equation and diffusion equation.
h) Classify the following equation as elliptic, parabolic or hyperbolic $\frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial z}{\partial y}$.

SECTION-B

2. a) Find the surface whose tangent planes cut off an intercept of constant length k from the axis of z.
b) Solve $\left(\mathrm{p}^{2}+\mathrm{q}^{2}\right) y=\mathrm{q} z$ using Charpit method.
3. Solve $\left(x_{2}+x_{3}\right)\left(p_{2}+p_{3}\right)^{2}+z p_{1}=0$ by using Jacobi's Method.
4. a) Find equation of surface which cuts surfaces of the system $z(x+y)=\lambda(3 z+1)$ orthogonally and which passes through the curve $x^{2}+y^{2}=1, z=1$.
b) Find the general solution of $\left(\mathrm{D}_{x}{ }^{2}-\alpha^{2} \mathrm{D}_{y}{ }^{2}\right) z=x^{2}$.

SECTION-C

5. a) The faces $x=0$ and $x=1$ of infinite slab are maintained at zero temperature and $u(x, t)=f(x)$ at $t=0$. Determine the temperature at a subsequent time t.
b) Find the deflection of a vibrating string of unit length having fixed ends with initial velocity zero and initial deflection $f(x)=k(\sin x-\sin 2 x)$.
6. Derive Heat Diffusion Equation and obtain the solution using method of separation of variables.
7. a) Solve $\frac{\partial^{2} z}{\partial x^{2}}-2 \frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=0$ by the method of separation of variables.
b) Solve $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$, subject to $u(x, 0)=u(x, m)=0$ where $0 \leq x \leq \ell$ and $u(0, y)=0, u(\ell, y)=\mathrm{F}(y)$ where $0 \leq y \leq m$.
