Roll No.

Total No. of Pages: 02

Total No. of Questions: 07

M.Sc. Mathematics (2018 Batch) (Sem.-2)

REAL ANALYSIS-II

Subject Code: MSM-202-18 M.Code: 75963

Time: 3 Hrs. Max. Marks: 70

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of FIVE questions carrying TWO marks each.
- 2. SECTION B & C. have THREE questions each.
- Attempt any FOUR questions from SECTION B & C carrying FIFTEEN marks each.
- 4. Select atleast TWO questions from SECTION B & C each.

SECTION-A

- l. Write short notes on:
 - a) State Littlewood's three principles.
 - b) State implicit function theorem.
 - c) Define Convex Functions.
 - d) State the monotone convergence theorem.
 - e) State Fatou's Lemma.

SECTION-B

- 2. State and prove the inverse function theorem.
- 3. a) If f = r almost everywhere, and f is a measurable function, then prove that g is also measurable.
 - b) State and prove Egoroff's theorem.
- 4. a) If E_1 and E_2 are measurable then prove that $E_1 \cup E_2$ is measurable.
 - b) Prove that the interval $[a, \infty]$ is measurable.

1 M-75963 (S37)-837

SECTION-C

- 5. a) Define Borel set. Give an example of a measurable set which is not a Borel set.
 - b) State and prove classical Lebesgue dominated convergence theorem.
- 6. a) Every bounded Riemann Integrable function over [a,b] is Lebesgue Integrable and the two integrals are equal.
 - b) Prove Fatou's lemma.
- 7. State and prove Lebesgue differentiation theorem.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 | M-75963 (S37)-837