Roll No.							Total No. of Pages : 0

Total No. of Questions: 07

M.Sc. Mathematics (2017 Batch) (Sem.-4)
ADVANCED SOLID MECHANICS

Subject Code: MSM-506 M.Code: 75974

Time: 3 Hrs. Max. Marks: 80

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of EIGHT questions carrying TWO marks each.
- SECTION B & C. have THREE questions in each section carrying SIXTEEN marks each.
- 3. Select atleast TWO questions from SECTION B & C EACH.

SECTION-A

l. Write short notes on:

- a) Stress and Strain
- b) Saint-Venant's principle
- c) Torsion of a circular shaft
- d) Flexure of beams by terminal load
- e) Airy's stress function
- f) Effect of internal pressure on spherical shells
- g) Applications of Treffz Method
- h) Thermal stresses in spherical bodies

SECTION-B

2. a) Discuss Hooke's law and its generalisation.

1 M-75974 (S30)-2044

b) Define Isotropic homogeneous elastic medium. Obtain stress strain relations for isotropic homogeneous medium in the form

$$\tau_{ii} = \lambda \delta_{ii} \mathbf{v} + 2 \mu \mathbf{e}_{ij}$$
; $(i, j = 1, 2, 3)$

- 3. a) Explain the strain energy function and its connection with Hooke's law.
 - b) State and prove Clapeyron's theorem.
- 4. a) Discuss the bending of beams by a terminal couple.
 - b) Show that position of origin of coordinates is immaterial in determining the torsion function.

SECTION-C

- 5. a) A body is in the state of plane stress parallel to the x_1x_2 -plane when the stress components τ_{13} , τ_{23} , τ_{33} vanish. Hence illustrate generalised plane stress.
 - b) What do you understand by plane stress? Discuss the physical circumstances giving rise to the state of plane strain. Illustrate it in case of a cylinder with plane ends and generators parallel to x_3 axis.
- 6. a) Show that solution of plane stress problem depends upon the solution of bi-harmonic equation.
 - b) Write short notes on:
 - i. Plane stress
 - ii. Plane strain
 - iii. Generalised plane stress
- 7. a) Illustrate Ritz method and relation with potential energy V and complimentary energy V* for one dimensional case.
 - b) Illustrate the Trefftz method by calculating an upper bound for the torsional rigidity of a square beam.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 | M-75974 (S30)-2044