Roll No.

\square

Total No. of Questions: 18

M.Sc. (IT) / MCA (Sem.-3)

DISCRETE STRUCTURES \& OPTIMIZATION Subject Code: PGCA-1917

Paper ID : 78393
Time : 3 Hrs.
Max. Marks: 70

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION - B \& C. have FOUR questions each.
3. Attempt any FIVE questions from SECTION B \& C carrying TEN marks each.
4. Select atleast TWO questions from SECTION - B \& C.

SECTION-A

Answer briefly :

1. i) Is the set $\mathrm{A}=\left\{x: x^{2}-7 x+12=0\right.$ and $\left.x^{2}-4 x+3=0\right\}$ empty? Justify.
ii) In how many ways 3 girls and 5 boys can sit at a round table so that no two girls can sit together.
2. i) State and prove De Morgan's Laws for sets.
ii) If A and B are two subsets of a universal set U with $n(\mathrm{U})=500, n(\mathrm{~A})=100$, $n(\mathrm{~B})=200$ and $n(\mathrm{~A} \cap \mathrm{~B})=50$, find $n\left(\mathrm{~A}^{\prime} \cap \mathrm{B}^{\prime}\right)$.
3. i) Solve $a_{n}=6 a_{n-1}-8 a_{n-2}, a_{0}=4, a_{1}=10$.
ii) State Exclusion-Inclusion Principle.
4. Find x and y if $(x+2,4)=(5,2 x+y)$.
5. Let A and B be sets with cardinalities m and n respectively. Find the number of one-to-one mapping from A to B where $m<n$.
6. What will be the chromatic number of complete graph with ' n ' vertices? Explain.
7. Draw the complement of graph given in fig. below :

FIG. 1
8. Let (G, o) be a group. Show that if (G, o) is an Abelian group, then show that $(\mathrm{a} o \mathrm{~b})^{2}=\mathrm{a}^{2} o \mathrm{~b}^{2}$ for all a and b in G.
9. Show that Z, the set of integers, is an integral domain.
10. If $\left(\mathrm{B},+, . .,{ }^{\prime}\right)$ is a Boolean algebra, then show that $a+a=a \forall a \in \mathrm{~B}$.

SECTION-B

11. i) Prove that a set containing n distinct elements has 2^{n} subsets.
ii) If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be any three sets, then show that $\mathrm{A}-(\mathrm{B} \cap \mathrm{C})=(\mathrm{A}-\mathrm{B}) \cup(\mathrm{A}-\mathrm{C})$.
12. i) In a joint family of 12 persons, 7 take tea, 6 take milk and 2 take neither. How many members take both tea and milk?
ii) Solve $\mathrm{S}(k)-4 \mathrm{~S}(k-1)+3 \mathrm{~S}(k-2)=k^{2}$.
13. i) Prove that the chromatic number of complete bipartite graph $k_{m, n}$. where m and n are + ve integers, is two.
ii) Can a graph with seven vertices be isomorphic to its complement? Justify.
14. i) If H and K are two subgroups of G , then prove that $\mathrm{H} \cap \mathrm{K}$ is also a subgroup of G .
ii) Consider a Boolean expression $f(a, b, c)=\left((a b)^{\prime} c\right)^{\prime}\left(\left(a^{\prime}+c\right)\left(b^{\prime}+c^{\prime}\right)\right)^{\prime}$ into a sum-ofproducts form.

SECTION-C

15. i) Prove that $\mathrm{A} \times(\mathrm{B}-\mathrm{C})=(\mathrm{A} \times \mathrm{B})-(\mathrm{A} \times \mathrm{C})$.
ii) Each student in a class of 50, studies atleast one of the subject English, Maths and Physics. 36 study English, 32 Physics and 26 Maths. 5 study English and Physics. 14 Maths and Physics and 2 English, Maths and Physics. Find the number of students who study (i) English and Maths (ii) English, Maths but not Physics.
16. i) Solve $S(k)-7 S(k-2)+6 S(k-3)=0, S(0)=8, S(1)=6, S(2)=22$.
ii) Consider the function $f: \mathrm{N} \times \mathrm{N} \rightarrow \mathrm{R}$ define by $f(x, y)=(2 x+1) 2^{y}-1$, where N is the set of natural numbers including zero. Show that f is bijective.
17. i) Does the graph given below possess an Euler's circuit?

FIG. 2
ii) Find the chromatic number of the complete graph k_{6}, k_{8} and k_{n}.
18. i) "Determine whether a semi-group with more than one idempotent element can be a group". Justify.
ii) Prove that an element a in Z_{n} is a unit iff a and n are relatively prime.

NOTE : Disclosure of Identity by writing Mobile No. or Marking of passing request on any paper of Answer Sheet will lead to UMC against the Student.

