Roll No. Total No. of Pages : 02

Total No. of Questions: 11

M.Sc. (Physics) (Campus) (2016 Onwards) (Sem.-3) PLASMA PHYSICS

Subject Code: PHS-536 M.Code: 51227

Time: 3 Hrs. Max. Marks: 70

INSTRUCTIONS TO CANDIDATES:

- 1. Section-A is compulsory consisting of TEN questions carrying TWO marks each.
- 2. Section-B contains SEVEN questions carrying FIVE marks each and students have to attempt any SIX questions.
- 3. Section-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Q1. Answer briefly: $2\times10=20$

- a. Give two examples each of naturally existing and artificially created plasmas.
- b. State Paschen's law of gas breakdown.
- c. Make a comparison in terms of advantages between electrostatic probes, magnetic probes and optical diagnostics of plasma.
- d. Draw the V-I characteristics of plasma using single electrostatic probe, explain each section.
- e. Differentiate between the Larmour radius and Cyclotron frequency for an electron and proton moving in a uniform magnetic field.
- f. Mention different types of oscillations/waves possible in plasma and write their dispersion relations.
- g. Write the macroscopic parameters of plasma.
- h. Differentiate between cold and hot plasmas.

1 | M-51227 (S17)-2128

- i. Differentiate between two-stream instability and gravitational instability in plasma.
- j. Write the Vlasov equation for plasma and give its properties.

SECTION-B

- Q2. Define plasma state of matter and explain its characteristics. 5
- Q3. Explain the breakdown of gases, breakdown potential and different regimes in a discharge.
- Q4. Describe the double probe technique for plasma diagnostics, draw its circuit diagram, explain working/procedure and V-I characteristics with due explanation to each portion of the curve.
- Q5. Using appropriate equations of motion for a particle in a varying magnetic field, derive the expression for the average force acting on the particle as well as magnetic moment of the particle.
- Q6. Discuss all the following fluid equations of motion and their version for plasma: 5
 - i) Equation of motion
 - ii) Equation of continuity
 - iii) Equation of state
- Q7. Define plasma oscillations, explain their origin and derive the expression for plasma frequency of the wave using appropriate wave equations.
- Q8. Explain how plasma is supported against gravity by magnetic field.

SECTION-C

- Q9. Discuss the Townsend's theory of collision by ionization leading to the breakdown of gas.
- Q10. Using appropriate equation of motions, derive the expression of polarization drift velocity and polarization current for a charged particle in a time-varying electric and uniform magnetic field.
- Q11. What are the parametric instabilities in plasma? Explain their types like: coupled oscillators, frequency matching.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 M-51227 (S17)-2128