Roll No. Total No. of Pages: 02

Total No. of Questions: 08

M.Tech. (ME) (2017 Onwards) (Sem.-1)
ADVANCED THERMODYNAMICS

Subject Code: MTME-105 M.Code: 74719

Time: 3 Hrs. Max. Marks: 100

INSTRUCTIONS TO CANDIDATES:

- 1. Attempt any FIVE questions in all, out of EIGHT questions.
- 2. Each question carry TWENTY marks.
- 1. a) What is physical interpretation of c_v and c_p ?
 - b) Consider a cup full of coffee placed in room air. If the pressure and entropy are maintained constant within the rigid room, in practice how can there be a heat loss?
- 2. A steel casting weighing 20 kg is removed from a furnace at a temperature of 800 °C and heat treated by quenching in a bath containing 500 kg water at 20°C. Calculate the change in availability of the universe due to this operation. The specific heat of the water is 4.18 KJ/kg K, and that of steel is 0.42 KJ/kg K. Assume that the bath of water is rigid and perfectly insulated from the surroundings after the casting has been dropped in, and take the datum temperature and pressure as 20°C and 1 bar respectively.
- 3. A dry gas analysis of the gas exhaled by a human lung is as follows O_2 : 16.5% and CO_2 :3.1%. Assume the "fuel" burned by humans is characterized by the chemical formula CH_x and is completely burned. Determine the values of "x" and (A:F).
- 4. a) The Joule Thomson effect can be depicted through a porous plug experiment that illustrates that the enthalpy remains constant during a throttling process. In the experiment a cylinder is divided into two adiabatic variable volume chambers A and B by a rigid porous material placed between them. The chamber pressures are maintained constant by adjusting the volume. Freon vapor with an initial volume V_{A,1}, pressure P_{A,1} and energy U_{A,1} is present in chamber A. The vapors penetrate through the porous wall to reach chamber B. The final volume of chamber A is zero. Determine the work done by the gas in chamber B, and the work done on chamber A. Apply the First Law for the combined system A and B and show that the enthalpy in the combined system is constant.
 - b) Show that generally real gases deliver a smaller amount of work as compared to an ideal gas during isothermal expansion for a (a) closed system from volume v_1 to v_2 , and (b) an open system from pressure P_1 to P_2 .

1 M-74719 (S9)-1754

- 5. a) Obtain a relation for ds for an ideal gas. Using the criterion for an exact differential, show that for this gas c_v is only a function of temperature.
 - b) A substance undergoes an adiabatic and reversible process. Obtain an expression for $(\partial T/\partial v)_s$ in terms of $c_V,~\beta_P,~\beta_T$ and T. What is the value of $(\partial T/\partial v)_s$ for copper, given that $\beta_P=5\times 10^{-5}~K^{-1},~\beta^T=8.7\times 10^{-7}~bar^{-1},~c=c_v=0.386~kJ~kg^{-1}~K^{-1},~v=1.36\times 10^{-4}~m^3~kg^{-1},$ and the temperature is 25°C? What is the temperature rise if $dv=-8.106\times 10^{-7}~m^3~kg^{-1}?$
- 6. Find the maximum work deliverable in a fuel cell by 1 kmole of H_2 with O_2 if it is isothermally reacted at 25°C and 1 bar to produce liquid water. Both reactants enter the cell separately. Determine the maximum voltage developed by the fuel cell. Consider also the scenario for the reaction of a stoichiometric amount of H_2 with O_2 . What is the maximum possible fuel cell efficiency? Assume that $\Delta h_c = 285830$ kJ kmole⁻¹.
- 7. Show that the Joule-Thomson coefficient, μ , is given by :

$$\mu = 1/c_p \left(T(\partial v/\partial T)_p - v \right)$$

Hence or otherwise show that the inversion temperature (T_i) is :

$$T_i = (\partial T/\partial v)_p v$$

8. a) A thermal conductor with constant thermal and electrical conductivities, k and λ respectively, connects two reservoirs at different temperatures and also carries an electrical current of density, J_1 . Show that the temperature distribution for one-dimensional flows is given by :

$$\frac{d^2T}{dx^2} - \frac{J_1\sigma}{k} \frac{dT}{dx} + \frac{J_1^2}{\lambda} = 0$$

Where σ is the Thomson coefficient of the wire.

b) If a fluid, consisting of a single component, is contained in two containers at different temperatures, show that the difference in pressure between the two containers is given by

$$\frac{dp}{dT} = \frac{h - u^*}{vT}$$

where h = specific enthalpy of the fluid at temperature T,

 u^* = the energy transported when there is no heat flow through thermal conduction, v = specific volume,

T =temperature.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 M-74719 (S9)-1754