Roll No. \square

ADVANCED THERMODYNAMICS

Subject Code : MTME-105

M.Code : 74719

Time : 3 Hrs.

Max. Marks : 100

INSTRUCTIONS TO CANDIDATES :

1. Attempt any FIVE questions in all, out of EIGHT questions.
2. Each question carry TWENTY marks.
3. a) What is physical interpretation of c_{v} and c_{p} ?
b) Consider a cup full of coffee placed in room air. If the pressure and entropy are maintained constant within the rigid room, in practice how can there be a heat loss?
4. A steel casting weighing 20 kg is removed from a furnace at a temperature of $800^{\circ} \mathrm{C}$ and heat treated by quenching in a bath containing 500 kg water at $20^{\circ} \mathrm{C}$. Calculate the change in availability of the universe due to this operation. The specific heat of the water is $4.18 \mathrm{KJ} / \mathrm{kg} \mathrm{K}$, and that of steel is $0.42 \mathrm{KJ} / \mathrm{kg} \mathrm{K}$. Assume that the bath of water is rigid and perfectly insulated from the surroundings after the casting has been dropped in, and take the datum temperature and pressure as $20^{\circ} \mathrm{C}$ and 1 bar respectively.
5. A dry gas analysis of the gas exhaled by a human lung is as follows $-\mathrm{O}_{2}: 16.5 \%$ and $\mathrm{CO}_{2}: 3.1 \%$. Assume the 'fuel'" burned by humans is characterized by the chemical formula CH_{x} and is completely burned. Determine the values of ' x ' and (A:F).
6. a) The Joule Thomson effect can be depicted through a porous plug experiment that illustrates that the enthalpy remains constant during a throttling process. In the experiment a cylinder is divided into two adiabatic variable volume chambers A and B by a rigid porous material placed between them. The chamber pressures are maintained constant by adjusting the volume. Freon vapor with an initial volume $\mathrm{V}_{\mathrm{A}, 1}$, pressure $\mathrm{P}_{\mathrm{A}, 1}$ and energy $\mathrm{U}_{\mathrm{A}, 1}$ is present in chamber A . The vapors penetrate through the porous wall to reach chamber B . The final volume of chamber A is zero. Determine the work done by the gas in chamber B, and the work done on chamber A. Apply the First Law for the combined system A and B and show that the enthalpy in the combined system is constant.
b) Show that generally real gases deliver a smaller amount of work as compared to an ideal gas during isothermal expansion for a (a) closed system from volume v_{1} to v_{2}, and (b) an open system from pressure P_{1} to P_{2}.
7. a) Obtain a relation for ds for an ideal gas. Using the criterion for an exact differential, show that for this gas c_{v} is only a function of temperature.
b) A substance undergoes an adiabatic and reversible process. Obtain an expression for $(\partial \mathrm{T} / \partial \mathrm{v})_{\mathrm{s}}$ in terms of $\mathrm{c}_{\mathrm{v}}, \beta_{\mathrm{P}}, \beta_{\mathrm{T}}$ and T . What is the value of $(\partial \mathrm{T} / \partial \mathrm{v})_{\mathrm{s}}$ for copper, given that $\beta_{\mathrm{P}}=5 \times 10^{-5} \mathrm{~K}^{-1}, \beta^{\mathrm{T}}=8.7 \times 10^{-7} \mathrm{bar}^{-1}, \mathrm{c}=\mathrm{c}_{\mathrm{v}}=0.386 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}, \mathrm{v}=1.36 \times 10^{-}$ ${ }^{4} \mathrm{~m}^{3} \mathrm{~kg}^{-1}$, and the temperature is $25^{\circ} \mathrm{C}$? What is the temperature rise if $\mathrm{dv}=-8.106 \times$ $10^{-7} \mathrm{~m}^{3} \mathrm{~kg}^{-1}$?
8. Find the maximum work deliverable in a fuel cell by 1 kmole of H_{2} with O_{2} if it is isothermally reacted at $25^{\circ} \mathrm{C}$ and 1 bar to produce liquid water. Both reactants enter the cell separately. Determine the maximum voltage developed by the fuel cell. Consider also the scenario for the reaction of a stoichiometric amount of H_{2} with O_{2}. What is the maximum possible fuel cell efficiency? Assume that $\Delta h_{c}=285830 \mathrm{~kJ} \mathrm{kmole}^{-1}$.
9. Show that the Joule-Thomson coefficient, μ, is given by :

$$
\mu=1 / \mathrm{c}_{\mathrm{p}}\left(\mathrm{~T}(\partial \mathrm{v} / \partial \mathrm{T})_{\mathrm{p}}-\mathrm{v}\right)
$$

Hence or otherwise show that the inversion temperature $\left(\mathrm{T}_{\mathrm{i}}\right)$ is :
$\mathrm{T}_{\mathrm{i}}=(\partial \mathrm{T} / \partial \mathrm{v})_{\mathrm{p}} \mathrm{v}$
8. a) A thermal conductor with constant thermal and electrical conductivities, k and λ respectively, connects two reservoirs at different temperatures and also carries an electrical current of density, J_{1}. Show that the temperature distribution for onedimensional flows is given by :

$$
\frac{d^{2} T}{d x^{2}}-\frac{J_{1} \sigma}{k} \frac{d T}{d x}+\frac{J_{1}^{2}}{\lambda}=0
$$

Where σ is the Thomson coefficient of the wire.
b) If a fluid, consisting of a single component, is contained in two containers at different temperatures, show that the difference in pressure between the two containers is given by

$$
\frac{d p}{d T}=\frac{h-u^{*}}{v T}
$$

where $h=$ specific enthalpy of the fluid at temperature T,
$u^{*}=$ the energy transported when there is no heat flow through thermal conduction,
$v=$ specific volume,
$T=$ temperature .

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

