Roll No.

Total No. of Pages: 02

5

20

5

Total No. of Questions: 08

M.Tech.(ME) PT (Sem.-1)

OPTIMIZATION TECHNIQUES

Subject Code: MME-501

M.Code: 38202

Time: 3 Hrs. Max. Marks: 100

INSTRUCTIONS TO CANDIDATES:

1. Attempt any FIVE questions out of EIGHT questions.

2. Each question carries TWENTY marks.

1. a) What are slack and surplus variables?

b) A Manufacturer produces two types of models M1 and M2. Each model of the type M1 requires 4 hours of grinding and 2 hours of polishing, whereas each model of the type M2 requires 2 hours of grinding and 5 hours of polishing. The manufacturer has 2 grinders and 3 polishers. Each grinder works 40 hours a week and each polisher works for 60 hours a week. Profit on M1 model is Rs. 3.00 and on model M2 is Rs. 4.00. Whatever is produced in a week is sold in the market. How should the manufacturer allocate his production capacity to the two types of models, so that he may make the maximum profit in a week? Write a suitable LPP for the above question.

2. Use simplex method to solve the following LP problem.

Maximum $Z = x_1 + x_2 + 3x_3$

Subject to $3x_1 + 2x_2 + x_3 \le 3$

 $2x_1 + x_2 + 2x_3 \le 2$

 $x_1, x_2 \ge 0$

- 3. a) What are the common errors in construction of a network?
 - b) Calculate the earliest start, earliest finish, latest start and latest finish of each activity of the project given below:

Activity	1-2	1-3	1-5	2-3	2-4	3-4	3-5	3-6	4-6	5-6
Duration Weeks)	8	7	12	4	10	5	5	10	7	4

1 | M - 3 8 2 0 2 (S 9) - 2 4 1

4.	Solve using	Vogel's	Approximation	Method a	and perform	optimality	Test	using	MODI
	method:								20

	D 1	D2	D3	D4	Supply	
01	2	3	11	7	6	
O2	1	0	6	1	1	
03	5	8	15	9	10	
Demand	7	5	3	2	17	

- 5. A game has the payoff matrix $A = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}$. Show that E (x, y) = 1 2y(x 1/2) and deduce that in the solution of the game, the second player follows a pure strategy while the first has infinite number of mixed strategies.
- 6. Consider the problem of assigning five operators to five machines. The assignment costs are given in figure.

20

7. Use dynamic programming to Max
$$Z = 2x_1 + 3x_2$$
 subject to constraint :

$$x_1 + x_2 \le 1$$

$$x_1 + x_2 \le 3$$

$$x_1 + x_2 \ge 0$$

and
$$x_1, x_2, x_3 \ge 0$$

8. Find the minimum of $f = x (x + 48/x^2)$ using variable bound method with initial guess of 0.6 and increment 0.5.

NOTE: Disclosure of identity by writing mobile number or making passing request on any page of Answer sheet will lead to UMC case against the Student.