Roll No.
Total No. of Pages: 02
Total No. of Questions : 08

M.Tech.(ME) PT (Sem.-1)
 OPTIMIZATION TECHNIQUES

Subject Code : MME-501

M.Code : 38202

Time : 3 Hrs.
Max. Marks : 100

INSTRUCTIONS TO CANDIDATES :

1. Attempt any FIVE questions out of EIGHT questions.
2. Each question carries TWENTY marks.
3. a) What are slack and surplus variables ?
b) A Manufacturer produces two types of models M1 and M2. Each model of the type M1 requires 4 hours of grinding and 2 hours of polishing, whereas each model of the type M2 requires 2 hours of grinding and 5 hours of polishing. The manufacturer has 2 grinders and 3 polishers. Each grinder works 40 hours a week and each polisher works for 60 hours a week. Profit on M1 model is Rs. 3.00 and on model M2 is Rs. 4.00. Whatever is produced in a week is sold in the market. How should the manufacturer allocate his production capacity to the two types of models, so that he may make the maximum profit in a week? Write a suitable LPP for the above question.
4. Use simplex method to solve the following LP problem.

Maximum $\mathrm{Z}=x_{1}+x_{2}+3 x_{3}$
Subject to $3 x_{1}+2 x_{2}+x_{3} \leq 3$
$2 x_{1}+x_{2}+2 x_{3} \leq 2$
$x_{1}, x_{2} \geq 0$
3. a) What are the common errors in construction of a network ?
b) Calculate the earliest start, earliest finish, latest start and latest finish of each activity of the project given below :

Activity	$1-2$	$1-3$	$1-5$	$2-3$	$2-4$	$3-4$	$3-5$	$3-6$	$4-6$	$5-6$
Duration Weeks)	8	7	12	4	10	5	5	10	7	4

4. Solve using Vogel's Approximation Method and perform optimality Test using MODI method :

	D1	D2	D3	D4	Supply
O1	2	3	11	7	6
O2	1	0	6	1	1
O3	5	8	15	9	10
Demand	7	5	3	2	17

5. A game has the payoff matrix $A=\left[\begin{array}{ll}0 & 1 \\ 2 & 1\end{array}\right]$. Show that $\mathrm{E}(x, y)=1-2 y(x-1 / 2)$ and deduce that in the solution of the game, the second player follows a pure strategy while the first has infinite number of mixed strategies.
6. Consider the problem of assigning five operators to five machines. The assignment costs are given in figure.

| | M1 | | M2 | M3 | M4 |
| :---: | :---: | :---: | :---: | :---: | :---: | M5

7. Use dynamic programming to Max $Z=2 x_{1}+3 x_{2}$ subject to constraint :
$x_{1}+x_{2} \leq 1$
$x_{1}+x_{2} \leq 3$
$x_{1}+x_{2} \geq 0$
and $x_{1}, x_{2}, x_{3} \geq 0$
8. Find the minimum of $f=x\left(x+48 / x^{2}\right)$ using variable bound method with initial guess of 0.6 and increment 0.5 .

NOTE : Disclosure of identity by writing mobile number or making passing request on any page of Answer sheet will lead to UMC case against the Student.

