Total No. of Questions : 08 M.Tech. (EE / Power Engineering) (Sem.-2) ADVANCED MATHEMATICS Subject Code : ELE/PEE-507 Paper ID : [E0487] Time: 3 Hrs. Max. Marks: 100 **INSTRUCTIONS TO CANDIDATES :** 1. Attempt any FIVE questions.

- Any missing data may be assumed appropriately. 2.
- a) Find inverse Laplace transform of $\frac{1}{(s^2 + a^2)^2}$. 1. (10)
 - b) Using Convolution theorem find inverse Z-transform of $\left(\frac{z}{z-1}\right)^3$. (10)

a) Using convolution theorem, find inverse Fourier transform of $\frac{1}{(1+i\omega)(2+i\omega)}$. (10)2.

- b) Write a short note on Vander Pol equation. (10)
- 3. Define the N-point Discrete Fourier Transform (DFT) and find the same for the sequence $[\sin(za)]_{i=0}^{N-1}$. (20)
- a) Find the general solution of the system $X' = \begin{vmatrix} 4 & 2 \\ 3 & 3 \end{vmatrix} X$. 4. (10)

b) Write a short note on two dimensional Fast Fourier Transform [FFT]. (10)

- 5. Explain the Volterra's Predator-Prey model by considering the following points :
 - (i) assumptions made in the model (ii) System of equations (iii) nature of critical points.
- 6. Explain the stability criteria for the critical points. Determine the type and stability of the critical point of the following system of equations: (20)

$$y_1' = y_2, \, y_2' = -5y_1 - 2y_2.$$

1 M-36003

Total No. of Pages : 02

Roll No.

7. a) A random variable 'x' has the following probability function:

x	-2	-1	0	1	2	3
<i>p</i> (<i>x</i>)	0.1	k	0.2	2 <i>k</i>	0.3	k

Find the value of *k* and calculate the variance.

- b) A die is tossed thrice. A success is getting "1 or 6". Find the mean and standard deviation of the number of successes. (5+15)
- 8. a) Define a binomial distribution and derive a formula for finding mean of the distribution.
 - b) The probability that a pen manufactured is defective is 0.1. If 12 such pens are manufactured, find the probability that
 - i) exactly 2 pens are defective.
 - ii) at least 2 pens will be defective.
 - iii) none will be defective.

(10+10)