Roll No. Total No. of Pages: 02

Total No. of Questions: 08

M.Tech. (Power System) (Sem.-1)
ADVANCED POWER SYSTEM ANALYSIS

Subject Code: PEE-502 M.Code: 38807

Time: 3 Hrs. Max. Marks: 100

INSTRUCTIONS TO CANDIDATES:

- 1. Attempt any FIVE questions out of EIGHT questions.
- 2. Each question carries TWENTY marks.
- 1. A power system consists of 4 buses. Generators are connected at buses 1 and 3, reactances of which are j0.25 and j0.15 respectively. The transmission lines are connected between buses 1-2, 1-4, 2-3 and 3-4 and have reactances j0.25, j0.3, j0.4 and j 0.2 respectively.
 - a) Form A,A,B,B,K,C,C matrices.
 - b) Find Y_{BUS} Using singular transformation matrix
- 2. For the network given below Form Z_{Bus} taking Bus 2 as reference bus.

Fig.1

- 3. Explain three phase Z_{BUS} Algorithm when a branch is added to given network.
- 4. Explain contingency analysis of power system by Brown's method.
- 5. Write an algorithm for Fast decoupled load flow. Write assumptions also.
- 6. For the system shown below calculate the following for line to ground fault at bus 5 with $Z_f = 0$:
 - a) The total fault current
 - b) Bus voltage during fault
 - c) Short circuit current in the lines.
 - d) Fault level at bus 5

1 M-38807 (S9)-2173

The + seq., - seq. and zero seq. bus impedance for the system is given below:

7 (1) $\mathbf{-7}$ (2) $\mathbf{-}$				
$Z_{BUS}^{(1)} = Z_{BUS}^{(2)} =$	0.1821	0.1687	0.1571	0.1341
	0.1687	0.1952	0.2750	0.2346
	0.1571	0.2750	0.4570	0.3211
	0.1341	0.2346	0.3211	0.4942

$Z_{BUS}^{(0)} =$	0.0492	0.04845	0.04791	0.03872
	0.04845	0.0969	0.09582	0.07745
	0.04791	0.015	0.15297	0.1044
	0.03872	0.07745	0.1044	0.5637

7. For A three bus power system, system parameters and the load and generation data is given below. The voltage at bus 2 is maintained at 1.01p.u. The maximum and minimum reactive power limits of the generation at bus 2 are 30 and 0 Mvar respectively. Taking bus 1 as slack bus and voltage is 1.03 + j0.0 obtain the load flow solution using Gauss - Seidel iterative method. $P_{g2} = 50$ MW, $P_{d2} = 30$ 0MW. $P_{d3} = 140$ MW, $P_{d3} = 40$ MVar. Perform Two iterations

Bus code	Impedance
1-2	j0.04
1-3	j0.03
2-3	j0.025

8. Discuss line power flow state Estimation.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 | M-38807 (S9)-2173