Roll No.							Total No. of Pages: 0	2
								_

Total No. of Questions: 08

M.Tech.(VLSI D)(2016 & Onwards) (Sem.-2)

EMBEDDED SYSTEMS

Subject Code: MTVL-203 M.Code: 74260

Time: 3 Hrs. Max. Marks: 100

INSTRUCTIONS TO CANDIDATES:

- 1. Attempt any FIVE questions out of EIGHT questions.
- 2. Each question carries TWENTY marks.
- a. What are the essential units and important characteristics of an embedded system?
 Explain purpose of each unit in embedded system. Justify your answer with suitable examples.
 10
 - b. Describe and compare the characteristics of various application specific instruction set processors (ASIPS).
- 2. Explain the following components of embedded system hardware: 20
 - Serial protocols I2C, Parallel protocol PCI bus, LCD controllers, Pulse width modulators and Watch dog timers. Give suitable example of each. Draw suitable block diagram.
- 3. a. What is real time operating system (RTOS)? Draw its state transition diagrams. Give two examples. What is kernel? Explain three broad categories of kernel.
 - b. Discuss the design trade-offs due to thermal consideration and effects of EMI/ES.
- 4. Explain the concept of interfacing of processor with input and output device. Do the comparison between IO mapped I/O, Memory mapped I/O, and Standard I/O interrupts.
- 5. What is Cache mapping? Explain three different Cache mapping techniques in detail. How the concepts of composing memories are used in embedded system? Illustrate this concept by taking a suitable example.

1 M-74260 (S27)-1302

8

- 6. a. While calling the Interrupt sub-routine (ISR), the storing and restoring of the state may consume many clock cycles, and is thus somewhat inefficient. Explain how the I/O method of direct memory access (DMA) eliminates these inefficiencies. Also, explain the DMA controllers.
 - b. Explain serial communication using I2C, CAN and USB in detail.
- 7. Explain how memory hierarchy and cache are used in embedded system? Briefly define each of the following common memory used in embedded system: PROM, flash EEPROM, RAM, DRAM, and mask-programmed ROM.
- 8. a. Describe the following keys steps involve in the development process of an embedded system: Design of system architecture, Operating system selection, selection of development platform and Coding optimization issue.
 - b. Explain different methods of testing and debugging embedded system software.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 | M-74260 (S27)-1302